Skip to main content
Log in

Identification and Characteristics of A Novel Salt-Tolerant Exiguobacterium sp. for Azo Dyes Decolorization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A salt-tolerant bacterium was isolated from the surface soil of a pharmaceutical factory, which could efficiently decolorize azo dyes. The strain was identified as Exiguobacterium sp. according to its morphological characteristics and 16S rRNA gene sequence analysis. Decolorization of X-3B with resting cells of this strain, which were catalyzed by redox mediator (anthraquinone), was studied, and the conditions were optimized. For color removal and cells growth, the optimal inoculation amount, pH, temperature, salinity, and metal ions were 6% (v/v), 5.4–7.0, 30–40 °C, 15% (w/v) NaCl, and 1 mmol L−1 Mg2+ or Ca2+, respectively. It was exhibited that decolorization process proceeded primarily by enzymatic reduction associated with a minor portion of bio-adsorption to inactivated microbial cells. Anthraquinone could really accelerate the decolorization of X-3B under the optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spadary, J. T., Isebelle, L., & Renganathan, V. (1994). Hydroxyl radical mediated degradation of azo dyes: Evidence for benzene generation. Environmental Science & Technology, 28(7), 1389–1393. doi:10.1021/es00056a031.

    Article  Google Scholar 

  2. Sharma, M. K., & Sobti, R. C. (2000). Rec effect of certain textile dyes in Bacillus subtilis. Mutation Research, 465(1–2), 27–38.

    CAS  Google Scholar 

  3. Ganesh, R., Boardman, G. D., & Michelsen, D. (1994). Fate of azo dyes in sludges. Water Research, 28(6), 1367–1376. doi:10.1016/0043-1354(94)90303-4.

    Article  CAS  Google Scholar 

  4. O’Neill, C., Hawkes, F. R., Hawkes, D. L., Esteves, S., & Wilcox, S. J. (2000). Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Research, 34(8), 2355–2361. doi:10.1016/S0043-1354(99)00395-4.

    Article  Google Scholar 

  5. O’Neill, C., Hawkes, F. R., Hawkes, D. L., Esteves, S., & Wilcox, S. J. (2000). Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Applied Microbiology and Biotechnology, 53(2), 249–254. doi:10.1007/s002530050016.

    Article  Google Scholar 

  6. Tan, N. C. G., Prenafest-Boldu, F. X., Opsteeg, J. L., Lettinga, G., & Field, J. A. (1999). Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Applied Microbiology and Biotechnology, 51(6), 865–871. doi:10.1007/s002530051475.

    Article  CAS  Google Scholar 

  7. Yu, J., Chen, H., Ji, M., & Yue, P. L. (2000). Distribution and change of microbial activity in combined UASB and AFB reactors for wastewater treatment. Bioprocess Engineering, 22(4), 315–322. doi:10.1007/s004490050738.

    Article  CAS  Google Scholar 

  8. Manu, B., & Chauhari, S. (2003). Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process Biochemistry, 38, 1213–1221. doi:10.1016/S0032-9592(02)00291-1.

    Article  CAS  Google Scholar 

  9. Van der Zee, F. P., Lettinga, G., & Field, J. A. (2001). Azo dye decolourisation by anaerobic granular sludge. Chemosphere, 44(5), 1169–1176. doi:10.1016/S0045-6535(00)00270-8.

    Article  Google Scholar 

  10. Dos Santos, A. B., Cervantes, F. J., & Van Lier, J. B. (2004). Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Applied Microbiology and Biotechnology, 64(1), 62–69. doi:10.1007/s00253-003-1428-y.

    Article  Google Scholar 

  11. Van Der Zee, F. P., Bisschops, I. A. E., Lettinga, G., & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science & Technology, 37(2), 402–408. doi:10.1021/es025885o.

    Article  Google Scholar 

  12. Russ, R., Rau, J., & Stolz, A. (2000). The function of cytoplasmatic flavin reductases in the bacterial reduction of azo dyes. Applied and Environmental Microbiology, 66(4), 1429–1434. doi:10.1128/AEM.66.4.1429-1434.2000.

    Article  CAS  Google Scholar 

  13. Van der Zee, F. P., Lettinga, G., & Field, J. A. (2000). The role of (auto) catalysis in the mechanism of anaerobic azo reduction. Water Science and Technology, 42(5–6), 301–308.

    Google Scholar 

  14. Bechtold, T., Burtscher, E., & Turcanu, A. J. (1999). Anthraquinones as mediators for the indirect cathodic reduction of dispersed organic dyestuffs. Journal of Electroanalytical Chemistry, 465, 80–87. doi:10.1016/S0022-0728(99)00057-1.

    Article  CAS  Google Scholar 

  15. Ponder, M. A., Thomashow, M. F., & Tiedje, J. M. (2008). Metabolic activity of Siberian permafrost isolates, Psychrobacter arcticus and Exiguobacterium sibiricum, at low water activities. Extremophiles, 12(4), 481–490. doi:10.1007/s00792-008-0151-0.

    Article  CAS  Google Scholar 

  16. Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Shouche, Y. S., Vani, A. A., Borgave, S. B., et al. (2008). Cultivable bacterial diversity of alkaline Lonar lake, India. Microbial Ecology, 55(2), 163–172. doi:10.1007/s00248-007-9264-8.

    Article  Google Scholar 

  17. Vishnivetskaya, T. A., Siletzky, R., Jefferies, N., Tiedje, J. M., & Kathariou, S. (2007). Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology, 54(2), 234–240. doi:10.1016/j.cryobiol.2007.01.008.

    Article  CAS  Google Scholar 

  18. La Duc, M. T., Dekas, A., Osman, S., Moissl, C., Newcombe, D., & Venkateswaran, K. (2007). Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Applied and Environmental Microbiology, 73(8), 2600–2611. doi:10.1128/AEM.03007-06.

    Article  Google Scholar 

  19. Kasana, R. C., & Yadav, S. K. (2007). Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Current Microbiology, 54(3), 224–229. doi:10.1007/s00284-006-0402-1.

    Article  CAS  Google Scholar 

  20. Crapart, S., Fardeau, M. L., Cayol, J. L., Thomas, P., Sery, C., Ollivier, B., et al. (2007). Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 2), 287–292. doi:10.1099/ijs.0.64639-0.

    Article  CAS  Google Scholar 

  21. Edlund, A., Jansson, J. K. (2008). Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiol Ecology, 65, 513–525.

    Google Scholar 

  22. Sivaprakasam, S., Mahadevan, S., Sekar, S., Rajakumar, S. (2008). Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microbial Cell Factories, 7, 15.

    Google Scholar 

  23. López, L., Pozo, C., Rodelas, B., Calvo, C., Juárez, B., Martínez-Toledo, M. V., et al. (2005). Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicology (London, England), 14(3), 299–312. doi:10.1007/s10646-003-6367-y.

    Google Scholar 

  24. Sarangi, A., & Krishnan, C. (2008). Comparison of in vitro Cr (VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresource Technology, 99(10), 4130–4137. doi:10.1016/j.biortech.2007.08.059.

    Article  CAS  Google Scholar 

  25. Anderson, C. R., & Cook, G. M. (2004). Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Current Microbiology, 48(5), 341–347. doi:10.1007/s00284-003-4205-3.

    Article  CAS  Google Scholar 

  26. Pattanapipitpaisal, P., Mabbett, A. N., Finlay, J. A., Beswick, A. J., Paterson-Beedle, M., Essa, A., et al. (2002). Reduction of Cr (VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress. Environmental Technology, 23(7), 731–745. doi:10.1080/09593332308618367.

    Article  CAS  Google Scholar 

  27. Zimmermann, T., Kulla, H. G., & Leisinger, T. (1982). Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. European Journal of Biochemistry, 129(1), 197–203. doi:10.1111/j.1432-1033.1982.tb07040.x.

    Article  CAS  Google Scholar 

  28. Hsueh, C. C., & Chen, B. Y. (2008). Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. Journal of Hazardous Materials, 154(1–3), 703–710. doi:10.1016/j.jhazmat.2007.10.083.

    Article  CAS  Google Scholar 

  29. Anjali, P., Poonam, S., & Leela, I. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59(2), 73–84. doi:10.1016/j.ibiod.2006.08.006.

    Article  Google Scholar 

  30. Knapp, J. S., Newby, P. S., & Reece, L. P. (1995). Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme and Microbial Technology, 17(7), 664–668. doi:10.1016/0141-0229(94)00112-5.

    Article  CAS  Google Scholar 

  31. Cànovas, M., Bernal, V., Sevilla, A., & Iborra, J. L. (2007). Salt stress effects on the central and carnitine metabolisms of Escherichia coli. Biotechnology and Bioengineering, 96(4), 722–737. doi:10.1002/bit.21128.

    Article  Google Scholar 

  32. Jorg, R., Hans, J. K., & Andreas, S. (2002). Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science & Technology, 36(7), 1497–1504. doi:10.1021/es010227+.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support (no. 50608011) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-yuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Qu, Yy., Zhou, Jt. et al. Identification and Characteristics of A Novel Salt-Tolerant Exiguobacterium sp. for Azo Dyes Decolorization. Appl Biochem Biotechnol 159, 728–738 (2009). https://doi.org/10.1007/s12010-009-8546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8546-7

Keywords

Navigation