Skip to main content

Advertisement

Log in

Engineering Escherichia coli for Fermentative Dihydrogen Production: Potential Role of NADH-Ferredoxin Oxidoreductase from the Hydrogenosome of Anaerobic Protozoa

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trichomonas vaginalis generates reduced ferredoxin within a unique subcellular organelle, hydrogenosome that is used as a reductant for H2 production. Pyruvate ferredoxin oxidoreductase and NADH dehydrogenase (NADH-DH) are the two enzymes catalyzing the production of reduced ferredoxin. The genes encoding the two subunits of NADH-DH were cloned and expressed in Escherichia coli. Kinetic properties of the recombinant heterodimer were similar to that of the native enzyme from the hydrogenosome. The recombinant holoenzyme contained 2.15 non-heme iron and 1.95 acid-labile sulfur atoms per heterodimer. The EPR spectrum of the dithionite-reduced protein revealed a [2Fe–2S] cluster with a rhombic symmetry of gxyz = 1.917, 1.951, and 2.009 corresponding to cluster N1a of the respiratory complex I. Based on the Fe content, absorption spectrum, and the EPR spectrum of the purified small subunit, the [2Fe–2S] cluster was located in the small subunit of the holoenzyme. This recombinant NADH-DH oxidized NADH and reduced low redox potential electron carriers, such as viologen dyes as well as Clostridium ferredoxin that can couple to hydrogenase for H2 production from NADH. These results show that this unique hydrogenosome NADH dehydrogenase with a critical role in H2 evolution in the hydrogenosome can be produced with near-native properties in E. coli for metabolic engineering of the bacterium towards developing a dark fermentation process for conversion of biomass-derived sugars to H2 as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edwards, P. P., Kuznetsov, V. L., & David, W. I. (2007). Hydrogen energy. Phil. Trans. Royal Soc. A, 365, 1043–1056.

    Article  CAS  Google Scholar 

  2. Benemann, J. (1996). Hydrogen biotechnology: Progress and prospects. Nature Biotechnology, 14, 1101–1103. doi:10.1038/nbt0996-1101.

    Article  CAS  Google Scholar 

  3. Nandi, R., & Sengupta, S. (1998). Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24, 61–84. doi:10.1080/10408419891294181.

    Article  CAS  Google Scholar 

  4. Prince, R. C., & Kheshgi, H. S. (2005). The photobiological production of hydrogen: Potential efficiency and effectiveness as a renewable fuel. Critical Reviews in Microbiology, 31, 19–31. doi:10.1080/10408410590912961.

    Article  CAS  Google Scholar 

  5. Sakurai, H., & Masukawa, H. (2007). Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Marine Biotechnology (New York, N.Y.), 9, 128–145. doi:10.1007/s10126-006-6073-x.

    CAS  Google Scholar 

  6. Dutta, D., De, D., Chaudhuri, S., & Bhattacharya, S. K. (2005). Hydrogen production by Cyanobacteria. Microbial Cell Factories, 4, 36. doi:10.1186/1475-2859-4-36.

    Article  CAS  Google Scholar 

  7. Melis, A. (2007). Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta, 226, 1075–1086. doi:10.1007/s00425-007-0609-9.

    Article  CAS  Google Scholar 

  8. Melis, A., Seibert, M., & Ghirardi, M. L. (2007). Hydrogen fuel production by transgenic microalgae. Advances in Experimental Medicine and Biology, 616, 110–121. doi:10.1007/978-0-387-75532-8_10.

    Article  Google Scholar 

  9. Gaffron, H., & Rubin, J. (1942). Fermentative and phochemical production of hydrogen in algae. The Journal of General Physiology, 26, 219–240. doi:10.1085/jgp.26.2.219.

    Article  CAS  Google Scholar 

  10. Mitsui, A., Kumizawa, S., Takahashi, A., Ikemoto, H., & Cao, S. A. T. (1986). Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoheterotrophically. Nature, 323, 720–722. doi:10.1038/323720a0.

    Article  CAS  Google Scholar 

  11. Reddy, P. M., Spiller, H., Albrecht, S. L., & Shanmugam, K. T. (1996). Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacterium, Anabaena variabilis. Applied and Environmental Microbiology, 62, 1220–1226.

    CAS  Google Scholar 

  12. Eriksen, N. T., Nielsen, T. M., & Iversen, N. (2008). Hydrogen produciton in anaerobic and microaerobic Thermatoga neapolitana. Biotechnology Letters, 30, 103–109. doi:10.1007/s10529-007-9520-5.

    Article  CAS  Google Scholar 

  13. Maeda, T., Sanchez-Torres, V., & Wood, T. K. (2007). Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77, 879–890. doi:10.1007/s00253-007-1217-0.

    Article  CAS  Google Scholar 

  14. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., & Yukawa, H. (2005). Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Applied and Environmental Microbiology, 71, 6762–6768. doi:10.1128/AEM.71.11.6762-6768.2005.

    Article  CAS  Google Scholar 

  15. Eggeman, T. (2005). Boundary analysis for H2 production by fermentation. NREL/SR-560-36129.

  16. Woodward, J., Orr, M., Cordray, K., & Greenbaum, E. (2000). Enzymatic production of biohydrogen. Nature, 405, 1014–1015. doi:10.1038/35016633.

    Article  CAS  Google Scholar 

  17. Zhang, Y. H., Evans, B. R., Mielenz, J. R., Hopkins, R. C., & Adams, M. W. (2007). High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE, 2, e456. doi:10.1371/journal.pone.0000456.

    Article  CAS  Google Scholar 

  18. Hrdy, I., Cammack, R., Stopka, P., Kulda, J., & Tachezy, J. (2005). Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrobial Agents and Chemotherapy, 49, 5033–5036. doi:10.1128/AAC.49.12.5033-5036.2005.

    Article  CAS  Google Scholar 

  19. Embley, T. M., Horner, D. A., & Hirt, R. P. (1997). Anaerobic eukaryote evolution: Hydrogenosomes as biochemically modified mitochondria? Trends in Ecology & Evolution, 12, 437–441. doi:10.1016/S0169-5347(97)01208-1.

    Article  Google Scholar 

  20. Lindmark, D. G., & Muller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. The Journal of Biological Chemistry, 248, 7724–7728.

    CAS  Google Scholar 

  21. Martin, W. (2005). The missing link between hydrogenosomes and mitochondria. Trends in Microbiology, 13, 457–459. doi:10.1016/j.tim.2005.08.005.

    Article  CAS  Google Scholar 

  22. Hrdy, I., Hirt, R. P., Dolezal, P., Bardonova, L., Foster, P. G., Tachezy, J., et al. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature, 432, 618–622. doi:10.1038/nature03149.

    Article  CAS  Google Scholar 

  23. Vidakovic, M. S., Fraczkiewicz, G., & Germanas, J. P. (1996). Expression and spectroscopic characterization of the hydrogenosomal [2Fe-2S] ferredoxin from the protozoan Trichomonas vaginalis. The Journal of Biological Chemistry, 271, 14734–14739. doi:10.1074/jbc.271.25.14734.

    Article  CAS  Google Scholar 

  24. Lee, J. H., Patel, P., Sankar, P., & Shanmugam, K. T. (1985). Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism. Journal of Bacteriology, 162, 344–352.

    CAS  Google Scholar 

  25. Dyall, S. D., Yan, W., Delgadillo-Correa, M. G., Lunceford, A., Loo, J. A., Clarke, C. F., et al. (2004). Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature, 431, 1103–1107. doi:10.1038/nature02990.

    Article  CAS  Google Scholar 

  26. Rabinowitz, J. (1972). Preparation and properties of clostridial ferredoxins. Methods in Enzymology, 24, 431–446. doi:10.1016/0076-6879(72)24089-7.

    Article  CAS  Google Scholar 

  27. Shanmugam, K. T., Buchanan, B. B., & Arnon, D. I. (1972). Ferredoxins in light- and dark-grown photosynthetic cells with special reference to Rhodospirillum rubrum. Biochimica et Biophysica Acta, 256, 477–486. doi:10.1016/0005-2728(72)90076-X.

    Article  CAS  Google Scholar 

  28. Harvey Jr, A. E., Smart, J. A., & Amis, E. S. (1955). Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Analytical Chemistry, 27, 26–29. doi:10.1021/ac60097a009.

    Article  CAS  Google Scholar 

  29. Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14, 454–458.

    Article  CAS  Google Scholar 

  30. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  31. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85. doi:10.1016/0003-2697(85)90442-7.

    Article  CAS  Google Scholar 

  32. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  33. Narayanan, N., Hsieh, M. Y., Xu, Y., & Chou, C. P. (2006). Arabinose-induction of lac-derived promoter systems for penicillin acylase production in Escherichia coli. Biotechnology Progress, 22, 617–625. doi:10.1021/bp050367d.

    Article  CAS  Google Scholar 

  34. Yano, T., Sled, V. D., Ohnishi, T., & Yagi, T. (1996). Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. The Journal of Biological Chemistry, 271, 5907–5913. doi:10.1074/jbc.271.4.1849.

    Article  CAS  Google Scholar 

  35. Yano, T., Sled, V. D., Ohnishi, T., & Yagi, T. (1994). Expression of the 25-kilodalton iron-sulfur subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry, 33, 494–499. doi:10.1021/bi00168a014.

    Article  CAS  Google Scholar 

  36. Atta, M., Lafferty, M. E., Johnson, M. K., Gaillard, J., & Meyer, J. (1998). Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase. Biochemistry, 37, 15974–15980. doi:10.1021/bi9812928.

    Article  CAS  Google Scholar 

  37. Ohnishi, T. (1998). Iron-sulfur clusters/semiquinones in complex I. Biochimica et Biophysica Acta, 1364, 186–206. doi:10.1016/S0005-2728(98)00027-9.

    Article  CAS  Google Scholar 

  38. de Graef, M. R., Alexeeva, S., Snoep, J. L., & Teixeira de Mattos, M. J. (1999). The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. Journal of Bacteriology, 181, 2351–2357.

    Google Scholar 

  39. Brandt, U. (2006). Energy converting NADH:quinone oxidoreductase (complex I). Annual Review of Biochemistry, 75, 69–92. doi:10.1146/annurev.biochem.75.103004.142539.

    Article  CAS  Google Scholar 

  40. Sazanov, L. A. (2007). Respiratory complex I: Mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry, 46, 2275–2288. doi:10.1021/bi602508x.

    Article  CAS  Google Scholar 

  41. Velazquez, I., Nakamaru-Ogiso, E., Yano, T., Ohnishi, T., & Yagi, T. (2005). Amino acid residues associated with cluster N3 in the NuoF subunit of the protontranslocating NADH-quinone oxidoreductase from Escherichia coli. FEBS Letters, 579, 3164–3168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Rooney, USDA-ARS, for providing C. acetobutylicum strain. This work was supported in part by US Department of Energy grant DE-FG36-04GO14019 and funds from the Florida Agricultural Experiment Station. This work was also supported in part by the In-House Research Program of the National High Magnetic Field Laboratory (AA) and by a grant by the Grant Agency of the Czech Republic no. 204/06/0944 (IH). L.B. was supported by grant MSM0021620858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Shanmugam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29.5 B)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, P.M., Angerhofer, A., Hrdy, I. et al. Engineering Escherichia coli for Fermentative Dihydrogen Production: Potential Role of NADH-Ferredoxin Oxidoreductase from the Hydrogenosome of Anaerobic Protozoa. Appl Biochem Biotechnol 153, 21–33 (2009). https://doi.org/10.1007/s12010-008-8508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8508-5

Keywords

Navigation