Skip to main content
Log in

Water Hyacinth as Carbon Source for the Production of Cellulase by Trichoderma reesei

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Water hyacinth (Eichhornia crassipes), an aquatic weed common to the subtropic/tropical regions, was utilized as an inexpensive lignocellulosic substrate for production of cellulase by Trichoderma reesei. The effects of process parameters like substrate pretreatment, substrate concentration, initial medium pH, mode of inoculation, and incubation temperature on cellulase production were investigated. Under optimal conditions, a maximal cellulase activity of 0.22 ± 0.04 IU/ml (approximately 73.3 IU/g cellulose) was recorded at the end of 15-day incubation period. Specific activity of the enzyme was 6.25 IU/mg protein. Hydrolysis of 1% substrate (water hyacinth) using crude enzyme dosage of 1.2 IU/g water hyacinth showed 28.7% saccharification in 1 h. The observations in present study indicate that saccharification of cellulose from water hyacinth was significantly higher by laboratory-produced cellulase than the commercial blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383. doi:10.1016/S0734-9750(00)00041-0.

    Article  CAS  Google Scholar 

  2. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15(3–4), 583–620. doi:10.1016/S0734-9750(97)00006-2.

    Article  CAS  Google Scholar 

  3. Lee, C. K., Darah, I., & Ibrahim, C. O. (2007). Bioresource Technology, 98, 1684–1689. doi:10.1016/j.biortech.2006.05.052.

    Article  CAS  Google Scholar 

  4. Bayer, E. A., Lamed, R., & Himmerl, M. E. (2007). Current Opinion in Biotechnology, 18, 1–9. doi:10.1016/j.copbio.2007.04.004.

    Article  Google Scholar 

  5. Gullon, B., Yanez, R., Alonso, J. L., & Parajo, J. C. (2008). Bioresource Technology, 99(2), 308–319. doi:10.1016/j.biortech.2006.12.018.

    Article  CAS  Google Scholar 

  6. Gray, K. A., Zhao, L., & Emptage, M. (2006). Current Opinion in Chemical Biology, 10(2), 141–146. doi:10.1016/j.cbpa.2006.02.035.

    Article  CAS  Google Scholar 

  7. Olsson, L., & Hahn-Hagerdahl, B. (1996). Enzyme and Microbial Technology, 18, 312–331. doi:10.1016/0141-0229(95)00157-3.

    Article  CAS  Google Scholar 

  8. Luo, J., Xia, L. M., Lin, J. P., & Cen, P. L. (1997). Biotechnology Progress, 13(6), 762–767. doi:10.1021/bp970100h.

    Article  CAS  Google Scholar 

  9. Cao, N. J., Xia, Y. K., Gong, C. S., & Tsao, G. T. (1997). Applied Biochemistry and Biotechnology, 63–65, 129–139. doi:10.1007/BF02920419.

    Article  Google Scholar 

  10. Ryu, D., & Mandels, M. (1980). Enzyme and Microbial Technology, 2, 91. doi:10.1016/0141-0229(80)90063-0.

    Article  CAS  Google Scholar 

  11. Abd El-Nasser, N. H., Helmy, S. M., & El-Gammal, A. A. (1997). Polymer Degradation & Stability, 55, 249–255. doi:10.1016/S0141-3910(96)00117-6.

    Article  CAS  Google Scholar 

  12. Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R., & Steinmuller, H. (1987). Applied Microbiology and Biotechnology, 26, 485–494. doi:10.1007/BF00253537.

    Article  CAS  Google Scholar 

  13. Aiello, C., Ferrer, A., & Ledesma, A. (1996). Bioresource Technology, 57, 13–18. doi:10.1016/0960-8524(96)00012-0.

    Article  CAS  Google Scholar 

  14. Kawamori, M., Morikawa, Y., Ado, Y., & Takasawa, S. (1986). Applied Microbiology and Biotechnology, 24, 454–458.

    CAS  Google Scholar 

  15. Liming, X., & Xueliang, S. (2004). Bioresource Technology, 91, 259–262. doi:10.1016/S0960-8524(03)00195-0.

    Article  Google Scholar 

  16. Baig, M. M., Mane, V. P., More, D. R., Shinde, L. P., & Baig, M. I. (2003). Journal of Environmental Biology, 24(2), 173–176.

    CAS  Google Scholar 

  17. Wen, Z., Liao, W., & Chen, S. (2005). Bioresource Technology, 96(4), 491–499. doi:10.1016/j.biortech.2004.05.021.

    Article  CAS  Google Scholar 

  18. Opande, G. O., Onyango, J. C., & Wagai, S. O. (2004). Limnologica, 34(1–2), 105–109. doi:10.1016/S0075-9511(04)80028-8.

    Google Scholar 

  19. Singhal, P. K., & Mahto, S. (2004). Journal of Environmental Biology, 25(3), 269–277.

    CAS  Google Scholar 

  20. Gunnarsson, C. C., & Petersen, C. M. (2007). Waste Management (New York, N.Y.), 27(1), 117–129. doi:10.1016/j.wasman.2005.12.011.

    Google Scholar 

  21. Malik, A. (2007). Environment International, 33(1), 122–138. doi:10.1016/j.envint.2006.08.004.

    Article  CAS  Google Scholar 

  22. Atlas, R. M. (1997). Handbook of microbiological media (2nd ed.). New York: CRC.

    Google Scholar 

  23. Mandel, M., & Reese, E. T. (1957). Journal of Bacteriology, 73, 269–278. doi:10.1002/path.1700730133.

    Article  Google Scholar 

  24. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268. doi:10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  25. Miller, G. L. (1959). Analytical Chemistry, 31, 426–427. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  27. Updegraff, D. M. (1969). Analytical Biochemistry, 32(3), 420–424. doi:10.1016/S0003-2697(69)80009-6.

    Article  CAS  Google Scholar 

  28. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  29. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107(1), 65–72. doi:10.1016/j.jbiotec.2003.09.011.

    Article  CAS  Google Scholar 

  30. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125(2), 198–209. doi:10.1016/j.jbiotec.2006.02.021.

    Article  CAS  Google Scholar 

  31. Juhász, T., Szengyel, Z., Szijártó, N., & Réczey, K. (2004). Applied Biochemistry and Biotechnology, 113(1–3), 201–211. doi:10.1385/ABAB:113:1-3:201.

    Article  Google Scholar 

  32. Jorgrsen, H., Kutter, J. P., & Olsson, L. (2003). Analytical Biochemistry, 317, 85–93. doi:10.1016/S0003-2697(03)00052-6.

    Article  Google Scholar 

  33. Soni, R., Sandhu, D. K., & Soni, S. K. (1999). Journal of Biotechnology, 73(1), 43–51. doi:10.1016/S0168-1656(99)00126-1.

    Article  CAS  Google Scholar 

  34. Howell, J. A. (1978). Biotechnology and Bioengineering, 20, 847–863. doi:10.1002/bit.260200607.

    Article  CAS  Google Scholar 

  35. Hatakka, A. I. (1983). European Journal of Applied Microbiology and Biotechnology, 18, 350–357. doi:10.1007/BF00504744.

    Article  CAS  Google Scholar 

  36. Ali, M. S., Akhand, A. A., Gomez, P. F., & Sarker, R. I. (1993). Journal of Basic Microbiology, 33(3), 155–159. doi:10.1002/jobm.3620330302.

    Article  CAS  Google Scholar 

  37. Ali, M. S., & Akhand, A. A. (1992). Journal of Basic Microbiology, 32(4), 259–268. doi:10.1002/jobm.3620320408.

    Article  CAS  Google Scholar 

  38. Mukhopadhyay, S., & Nandi, B. (2001). Journal of Mycopathological Research, 1, 57–60.

    Google Scholar 

  39. Shash, S. M. (2002). Egyptian Journal of Microbiology (Seoul, Korea), 37(2), 101–115.

    CAS  Google Scholar 

  40. Ismail, A. M., Abdel-Naby, M. A., & Abdel-Fattah, A. F. (1995). Microbios, 83(336), 191–198.

    CAS  Google Scholar 

  41. Suresh Chandra Kurup, R., Snishamol, C., & Nagendra Prabhu, G. (2005). Malaysian Journal of Microbiology (Seoul, Korea), 1(2), 25–29.

    Google Scholar 

  42. Kumar, R., & Singh, R. P. (2001). Applied Biochemistry and Biotechnology, 96(1–3), 71–82. doi:10.1385/ABAB:96:1-3:071.

    Article  CAS  Google Scholar 

  43. Esterbauer, H., Steiner, J., Labudova, I., Hermann, A., & Hayn, M. (1991). Bioresource Technology, 36, 51–65. doi:10.1016/0960-8524(91)90099-6.

    Article  CAS  Google Scholar 

  44. Hronich, J. E., Martin, L., Plawsky, J., & Bungay, H. R. (2008). Journal of Industrial Microbiology & Biotechnology, 35(5), 393–402. doi:10.1007/s10295-008-0333-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhangi Khedkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, P., Nair, S. & Khedkar, S. Water Hyacinth as Carbon Source for the Production of Cellulase by Trichoderma reesei . Appl Biochem Biotechnol 158, 552–560 (2009). https://doi.org/10.1007/s12010-008-8476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8476-9

Keywords

Navigation