Skip to main content
Log in

Cloning, Expression, and Characterization of a New Streptomyces sp. S27 Xylanase for Which Xylobiose is the Main Hydrolysis Product

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A xylanase gene, xynBS27, was cloned from Streptomyces sp. S27 and consisted of 693 bp encoding a 230-residue protein, including a putative 41-residue signal peptide. Belonging to the glycoside hydrolase family 11, XynBS27 exhibits the maximum identity (75.9%) to the xylanase from Streptomyces sp. zxy19. Recombinant XynBS27 was overexpressed in Pichia pastoris, and the xylanase activity was 7624.0 U/ml after high-cell-density fermentation in 3.7-L fermenter. The purified recombinant XynBS27 had a high specific activity of 3272.0 U/mg. The optimum temperature and pH for XynBS27 activity was 65 °C and pH 6.5, respectively. XynBS27 showed good pH stability and retained more than 80% of the maximum activity after incubation in buffers with pH ranging between 4.0 and 12.0 at 37 °C for 1 h. The main hydrolysis product of xylan by XynBS27 was xylobiose (>75%), which was good for human health derived from its ability to modulate the intestinal function. The attractive biochemical characteristics of XynBS27 suggest that it may be a good candidate in a variety of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23. doi:10.1016/j.femsre.2004.06.005.

    Article  CAS  Google Scholar 

  2. Biely, P. (1985). Trends in Biotechnology, 3, 286–290. doi:10.1016/0167-7799(85)90004-6.

    Article  CAS  Google Scholar 

  3. Moure, A., Gullon, P., Dominguez, H., & Parajo, J. C. (2006). Process Biochemistry, 41, 1913–1923. doi:10.1016/j.procbio.2006.05.011.

    Article  CAS  Google Scholar 

  4. Prade, R. A. (1996). Biotechnology & Genetic Engineering Reviews, 13, 101–131.

    CAS  Google Scholar 

  5. Kluepfel, D., Shareck, F., Mondou, F., & Morosoli, R. (1986). Applied Microbiology and Biotechnology, 24, 230–234. doi:10.1007/BF00261542.

    Article  CAS  Google Scholar 

  6. Srivastava, R., Ali, S. S., & Srivastava, B. S. (1991). FEMS Microbiology Letters, 78, 201–206. doi:10.1016/0378-1097(91)90158-7.

    Article  CAS  Google Scholar 

  7. Wang, Y. R., Zhang, H. L., He, Y. Z., Luo, H. Y., & Yao, B. (2007). Aquaculture (Amsterdam, Netherlands), 267, 328–334. doi:10.1016/j.aquaculture.2007.03.005.

    Article  CAS  Google Scholar 

  8. Cheng, H. L., Wang, P. M., Chen, Y. C., Yang, S. S., & Chen, Y. C. (2008). Bioresource Technology, 99, 227–231. doi:10.1016/j.biortech.2006.11.023.

    Article  CAS  Google Scholar 

  9. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2008). Bioresource Technology, 99, 1252–1258. doi:10.1016/j.biortech.2007.02.016.

    Article  CAS  Google Scholar 

  10. Li, N., Yang, P., Wang, Y., Luo, H., Meng, K., Wu, N., et al. (2008). Journal of Microbiology and Biotechnology, 18, 410–416.

    CAS  Google Scholar 

  11. Miller, G. L., Blum, R., Glennon, W. E., & Burton, A. L. (1960). Analytical Biochemistry, 2, 127–132. doi:10.1016/0003-2697(60)90004-X.

    Article  Google Scholar 

  12. Chen, C. C., Wu, P. H., Huang, C. T., & Cheng, K. J. (2004). Enzyme and Microbial Technology, 35, 315–320. doi:10.1016/j.enzmictec.2004.05.007.

    Article  Google Scholar 

  13. Yang, P., Shi, P., Wang, Y., Bai, Y., Meng, K., Luo, H., et al. (2007). Journal of Microbiology and Biotechnology, 17, 58–66.

    Google Scholar 

  14. Sanglier, J. J., Haag, H., Huck, T. A., & Fehr, T. (1993). Research in Microbiology, 144, 633–642. doi:10.1016/0923-2508(93)90066-B.

    Article  CAS  Google Scholar 

  15. Georis, J., Giannotta, F., Lamotte-Brasseur, J., Devreese, B., Beeumen, J. V., Granier, B., et al. (1999). Gene, 237, 123–133. doi:10.1016/S0378-1119(99)00311-X.

    Article  CAS  Google Scholar 

  16. Cereghino, J. L., & Cregg, J. M. (2002). FEMS Microbiology Reviews, 24, 45–66. doi:10.1111/j.1574-6976.2000.tb00532.x.

    Article  Google Scholar 

  17. Böer, E., Steinborn, G., Kunze, G., & Gellissen, G. (2007). Applied Microbiology and Biotechnology, 77, 513–523. doi:10.1007/s00253-007-1209-0.

    Article  Google Scholar 

  18. Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., et al. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 1230–1237. doi:10.1271/bbb.64.1230.

    Article  CAS  Google Scholar 

  19. Tsujibo, H., Miyamoto, K., Kuda, T., Minami, K., Sakamoto, T., Hasegawa, T., et al. (1992). Applied and Environmental Microbiology, 58, 371–375.

    CAS  Google Scholar 

  20. Kluepfel, D., Vats-Mehta, S., Aumont, F., Shareck, F., & Morosoli, R. (1990). The Biochemical Journal, 267, 45–50.

    CAS  Google Scholar 

  21. Zhang, G. M., Huang, J., Huang, G. R., Ma, L. X., & Zhang, X. E. (2007). Applied Microbiology and Biotechnology, 74, 339–346. doi:10.1007/s00253-006-0648-3.

    Article  CAS  Google Scholar 

  22. Heck, J. X., Flôres, S. H., Hertz, P. F., & Ayub, M. A. (2006). Bioresource Technology, 97, 1902–1906. doi:10.1016/j.biortech.2005.08.013.

    Article  CAS  Google Scholar 

  23. Li, N., Meng, K., Wang, Y., Shi, P., Luo, H., Bai, Y., et al. (2008). Applied Microbiology and Biotechnology, 80, 231–240. doi:10.1007/s00253-008-1533-z.

    Article  CAS  Google Scholar 

  24. Ali, M. K., Fukumura, M., Sakano, K., Karita, S., Kimura, T., Sakka, K., et al. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 1596–1604. doi:10.1271/bbb.63.1596.

    Article  CAS  Google Scholar 

  25. Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. J., & Hayashi, K. (2004). Journal of Molecular Catalysis. B, Enzymatic, 27, 207–213. doi:10.1016/j.molcatb.2003.11.012.

    Article  CAS  Google Scholar 

  26. Jeong, K. J., Park, I. Y., Kim, M. S., & Kim, S. C. (1998). Applied Microbiology and Biotechnology, 50, 113–118. doi:10.1007/s002530051264.

    Article  CAS  Google Scholar 

  27. Vazquez, M. J., Alonso, J. L., Dominguez, H., & Parajo, J. C. (2000). Trends in Food Science & Technology, 11, 387–393. doi:10.1016/S0924-2244(01)00031-0.

    Article  CAS  Google Scholar 

  28. Chen, C. S., Chen, J. L., & Lin, T. Y. (1997). Enzyme and Microbial Technology, 21, 91–96. doi:10.1016/S0141-0229(96)00236-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program of China (863 Program; no. 2007AA100601) and National Key Technology R&D Program of China (no. 2006BAD12B05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Shi, P., Yang, P. et al. Cloning, Expression, and Characterization of a New Streptomyces sp. S27 Xylanase for Which Xylobiose is the Main Hydrolysis Product. Appl Biochem Biotechnol 159, 521–531 (2009). https://doi.org/10.1007/s12010-008-8411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8411-0

Keywords

Navigation