Skip to main content

Advertisement

Log in

Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sorghum is a tropical grass grown primarily in semiarid and drier parts of the world, especially areas too dry for corn. Sorghum production also leaves about 58 million tons of by-products composed mainly of cellulose, hemicellulose, and lignin. The low lignin content of some forage sorghums such as brown midrib makes them more digestible for ethanol production. Successful use of biomass for biofuel production depends on not only pretreatment methods and efficient processing conditions but also physical and chemical properties of the biomass. In this study, four varieties of forage sorghum (stems and leaves) were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy and X-ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and the enzymatic hydrolysis process. Forage sorghums with a low syringyl/guaiacyl ratio in their lignin structure were easy to hydrolyze after pretreatment despite the initial lignin content. Enzymatic hydrolysis was also more effective for forage sorghums with a low crystallinity index and easily transformed crystalline cellulose to amorphous cellulose, despite initial cellulose content. Up to 72% hexose yield and 94% pentose yield were obtained using modified steam explosion with 2% sulfuric acid at 140 °C for 30 min and enzymatic hydrolysis with cellulase (15 filter per unit (FPU)/g cellulose) and β-glucosidase (50 cellobiose units (CBU)/g cellulose).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erback, D. C.(2005). Biomass as feedstock for bioenergy and bioproducts industry: Technical feasibility of a billion-ton annual supply. Available from: http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. Accessed January 2008.

  2. United States Department of Agriculture. (2008), Data and Statistics. Available from: http://www.usda.gov/wps/portal/!ut/p/_s.7_0_A/7_0_1OB?navid=DATA_STATISTICS&parentnav=AGRICULTURE&navtype=RT. Accessed February 2008.

  3. Marsalis, M. A. (2004). PhD Thesis. Lubbock, USA: Texas Tech University.

  4. Oliver, A. L., Pedersen, J. F., Grant, R. J., & Klopfenstein, T. J. (2005). Crop Science, 45, 2234–2239. doi:10.2135/cropsci2004.0644.

    Article  CAS  Google Scholar 

  5. Oliver, A. L., Pedersen, J. F., Grant, R. J., Klopfenstein, T. J., & Jose, H. D. (2005). Crop Science, 45, 2240–2245. doi:10.2135/cropsci2004.0660.

    Article  CAS  Google Scholar 

  6. Saha, B. C. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 279–291. doi:10.1007/s10295-003-0049-x.

    Article  CAS  Google Scholar 

  7. Saha, B. C. (2004). ACS Symposium Series. American Chemical Society, 889, 2–34.

    CAS  Google Scholar 

  8. Abbas, C., Beery, K., Dennison, E., & Corrington, P. (2004). ACS Symposium Series. American Chemical Society, 889, 84–97.

    Article  CAS  Google Scholar 

  9. Saha, B. C., & Bothast, R. J. (1999). Applied Biochemistry and Biotechnology, 76, 65–77. doi:10.1385/ABAB:76:2:65.

    Article  CAS  Google Scholar 

  10. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Biotechnology Progress, 21, 816–822. doi:10.1021/bp049564n.

    Article  CAS  Google Scholar 

  11. Dien, B. S., Li, X., Iten, L. B., Jordan, D. B., Nichols, N. N., O'Bryan, P. J., et al. (2006). Enzyme and Microbial Technology, 39, 1137–1144. doi:10.1016/j.enzmictec.2006.02.022.

    Article  CAS  Google Scholar 

  12. Qureshi, N., Dien, B. S., Nichols, N. N., Saha, B. C., & Cotta, M. A. (2006). Food and Bioproducts Processing, 84, 114–122. doi:10.1205/fbp.05038.

    Article  CAS  Google Scholar 

  13. Mosier, N. S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., et al. (2005). Applied Biochemistry and Biotechnology, 125, 77–97. doi:10.1385/ABAB:125:2:077.

    Article  CAS  Google Scholar 

  14. Chaudhuri, B. K., & Sahai, V. (1993). Enzyme and Microbial Technology, 15, 513–518. doi:10.1016/0141-0229(93)90085-G.

    Article  CAS  Google Scholar 

  15. Chundawat, S. P. S., Balan, V., Dale, B. E., Jones, D., & Sousa, L. D. (2007). Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29.

  16. Jeffries, T. W. (2000). Advances in Applied Microbiology, 47, 221–268. doi:10.1016/S0065-2164(00)47006-1.

    Article  CAS  Google Scholar 

  17. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848. doi:10.1016/j.procbio.2003.09.011.

    Article  CAS  Google Scholar 

  18. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34. doi:10.1007/s002530100624.

    Article  CAS  Google Scholar 

  19. Bothast, R. J., Nichols, N. N., & Dien, B. S. (1999). Biotechnology Progress, 15, 867–875. doi:10.1021/bp990087w.

    Article  CAS  Google Scholar 

  20. Bals, B., Dale, B., & Balan, V. (2006). Energy & Fuels, 20, 2732–2736. doi:10.1021/ef060299s.

    Article  CAS  Google Scholar 

  21. Xu, Z., Wang, Q., Jiang, Z., Yang, X., & Ji, Y. (2007). Biomass and Bioenergy, 31, 162–167. doi:10.1016/j.biombioe.2006.06.015.

    Article  CAS  Google Scholar 

  22. Xu, Y., Shen, Q., Zhong, Z., & Chen, X. (2004). Guang Pu Xue Yu Guang Pu Fen Xi, 24, 1050–1054.

    CAS  Google Scholar 

  23. Liu, R., Yu, H., & Huang, Y. (2005). Cellulose (London, England), 12, 25–34. doi:10.1023/B:CELL.0000049346.28276.95.

    Google Scholar 

  24. Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Applied Biochemistry and Biotechnology, 121–124, 1081–1099. doi:10.1385/ABAB:124:1-3:1081.

    Article  Google Scholar 

  25. Saravanan, S., Balasubramanian, A., & Gunsasekaran, S. (2000). Asian. Journal of Physics, 9, 480–482.

    CAS  Google Scholar 

  26. Kotilainen, R. A., Toivanen, T., & Alen, R. J. (2000). Journal of Wood Chemistry and Technology, 20, 307–320. doi:10.1080/02773810009349638.

    Article  CAS  Google Scholar 

  27. Kondo, T., Kataoka, Y., & Hishikawa, Y. (1998). ACS Symposium Series. American Chemical Society, 688, 173–183.

    CAS  Google Scholar 

  28. Zhang, J., & Pan, S. (1995). Xianweisu Kexue Yu Jishu, 3, 22–27.

    CAS  Google Scholar 

  29. Mascarenhas, M., Dighton, J., & Arbuckle, G. A. (2000). Applied Spectroscopy, 54, 681–686. doi:10.1366/0003702001950166.

    Article  CAS  Google Scholar 

  30. Corredor, D. Y., Bean, S., & Wang, D. (2007). Cereal Chemistry, 84, 61–66. doi:10.1094/CCHEM-84-1-0061.

    Article  CAS  Google Scholar 

  31. Corredor, D. Y., Sun, X. S., Salazar, J. M., Hohn, K. L., & Wang, D. (2008). Journal of Biobased Materials and Bioenergy, 2, 43–50. doi:10.1166/jbmb.2008.201.

    Article  Google Scholar 

  32. National Renewable Energy Laboratory (NREL).(2006), LAP 001-008. Golden, CO.

  33. American Association of Cereal Chemists. (2000). Approved Methods of the AACC, 10th ed, St. Paul, MN.

  34. Association of Official Analytical Chemists. (1995). Approved Methods of the AOAC, 15th Ed. Arlington, VA.

  35. Segal, L., Creely, J. J., Martin, A. E. J., & Conrad, C. M. (1959). Textile Research Journal, 29, 786–794. doi:10.1177/004051755902901003.

    Article  CAS  Google Scholar 

  36. Faix, O. (1992). In S.Y. Lin, & C.W. Dence (Eds.), Methods in lignin chemistry (pp. 83–93). Berlin: Springer.

    Google Scholar 

  37. Pandey, K. K. (1999). Journal of Applied Polymer Science, 71, 1969–1975. doi:10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  38. Sene, C. F. B., McCann, M. C., Wilson, R. H., & Grinter, R. (1994). Plant Physiology, 106, 1623–1631.

    CAS  Google Scholar 

  39. Sun, R., & Tomkinson, J. (2004). Separation Science and Technology, 39, 391–411. doi:10.1081/SS-120027565.

    Article  CAS  Google Scholar 

  40. Sjöström, E. (1981). Wood chemistry: fundamentals and applications. New York: Academic Press.

    Google Scholar 

  41. Stewart, D., Wilson, H. M., Hendra, P. J., & Morrison, I. M. (1995). Journal of Agricultural and Food Chemistry, 43, 2219–2225. doi:10.1021/jf00056a047.

    Article  CAS  Google Scholar 

  42. Atalla, R. H., Agarwal, U. P., & Bond, J. S. (1992). In S.Y. Lin, & C.W. Dence (Eds.), Methods in lignin chemistry (pp. 162–176). Berlin: Springer.

    Google Scholar 

  43. Michell, A. J. (1990). Carbohydrate Research, 197, 53–60. doi:10.1016/0008-6215(90)84129-I.

    Article  CAS  Google Scholar 

  44. Reddy, N., & Yang, Y. (2007). Journal of Agricultural and Food Chemistry, 55, 5569–5574. doi:10.1021/jf0707379.

    Article  CAS  Google Scholar 

  45. Kim, T. H., Lee, Y. Y., Sunwoo, C., & Kim, J. S. (2006). Applied Biochemistry and Biotechnology, 133, 41–57. doi:10.1385/ABAB:133:1:41.

    Article  CAS  Google Scholar 

  46. Evert, R. F. (2006). Esau's Plant Anatomy (3rd ed.). New Jersey: Wiley.

    Google Scholar 

  47. Franz, G., & Blaschek, W. (1990). In P. M. Dey (Ed.), Methods in Plant Biochemistry pp. 291–322. San Diego, CA: Academic.

    Google Scholar 

  48. Kasai, N., & Kakudo, M. (2005). X-Ray Diffraction by Macromolecules. Japan: Springer.

    Google Scholar 

  49. Ardizzone, S., Dioguardi, F. S., Mussini, T., Mussini, P. R., Rondinini, S., Vercelli, B., et al. (1999). Cellulose (London, England), 6, 57–69. doi:10.1023/A:1009204309120.

    CAS  Google Scholar 

  50. Soltys, J., Lisowski, L., & Knapczyc, J. (1984). Acta Pharmaceutica Technologica, 30, 174–180.

    Google Scholar 

  51. Monties, B. (1989). In J. B. Harborne (Ed.),Methods in Plant Biochemistry pp. 113–157. San Diego, CA: Academic.

    Google Scholar 

Download references

Acknowledgements

We would particularly like to acknowledge the support from Kansas State Agricultural Experiment Station, Kansas State University, Manhattan, KS. Contribution no. 08-337-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corredor, D.Y., Salazar, J.M., Hohn, K.L. et al. Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl Biochem Biotechnol 158, 164–179 (2009). https://doi.org/10.1007/s12010-008-8340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8340-y

Keywords

Navigation