Skip to main content
Log in

Enzymatic Polymerization of Natural Anacardic Acid and Antibiofouling Effects of Polyanacardic Acid Coatings

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gellerman, J. L., Walsh, N. J., Werner, N. K., & Schlenk, H. (1969). Canadian Journal of Microbiology, 15, 1219–1223.

    Article  CAS  Google Scholar 

  2. Himejima, M., & Kubo, I. (1991). Journal of Agricultural and Food Chemistry, 39, 418–421.

    Article  CAS  Google Scholar 

  3. Kubo, I., Masuoka, N., Ha, T. J., & Tsujimoto, K. (2006). Food Chemistry, 99, 555–562.

    Article  CAS  Google Scholar 

  4. Eichbaum, F. W. (1946). Memorias do Instituto Butantan, 19, 71–86.

    CAS  Google Scholar 

  5. Grazzini, R., Hesk, D., Heininger, E., Hildebrandt, G., Reddy, C. C., Cox-Foster, D., Medford, J., Craig, R., & Mumma, R. O. (1991). Biochemical and Biophysical Research Communications, 176, 775–780.

    Article  CAS  Google Scholar 

  6. Kozubek, A., & Nienartowicz, B. (1995). Acta Biochimica Polonica, 42, 309–316.

    CAS  Google Scholar 

  7. Trevisan, M. T. S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., et al. (2005). Food and Chemical Toxicology, 44, 188–197.

    Article  CAS  Google Scholar 

  8. Menon, A. R. R., Pillai, C. K. S., Sudha, J. D., & Mathew, A. G. (1985). Journal of Scientific and Industrial Research, 44, 324–338.

    CAS  Google Scholar 

  9. Kubo, I., Komatsu, S., & Ochi, M. (1986). Journal of Agricultural and Food Chemistry, 34, 970–973.

    Article  CAS  Google Scholar 

  10. Parmashivappa, R., Kumar, P. P., Vithyathil, P. J., & Rao, A. S. (2001). Journal of Agricultural and Food Chemistry, 49, 2548–2551.

    Article  CAS  Google Scholar 

  11. Ikeda, R., Tanaka, H., Uyama, H., & Kobayashi, S. (2000). Polymer Journal, 32, 589–593.

    Article  CAS  Google Scholar 

  12. Nagabhushana, K. S., & Ravindranath, B. (1995). Journal of Agricultural and Food Chemistry, 43, 2381–2383.

    Article  CAS  Google Scholar 

  13. Tsunetaro, K., & Mitsuo, K. (1995). Japanese Patent JP1995000062290.

  14. General Foods (Rye, NY) (1946). Indian Patent 34671.

  15. Krinsky, N. I. (1992). Proceedings of the Society for Experimental Biology and Medicine, 200, 248–254.

    CAS  Google Scholar 

  16. Hładyszowski, J., Zubik, L., & Kozubek, A. (1998). Free Radical Research, 28, 359–368.

    Article  Google Scholar 

  17. Kubo, I. (1999). Chemtech, 29, 37–42.

    CAS  Google Scholar 

  18. Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., et al. (1993). Journal of Agricultural and Food Chemistry, 41, 1016–1101.

    Article  CAS  Google Scholar 

  19. Tyman, J. H. P. (2001). Recent Research and Development in Lipid Research, 5, 125–145.

    CAS  Google Scholar 

  20. Kubo, I., Ochi, M., Vieira, P. C., & Komatsu, S. (1993). Journal of Agricultural and Food Chemistry, 41, 1012–1015.

    Article  CAS  Google Scholar 

  21. Karakaya, S. (2004). Critical Reviews in Food Science and Nutrition, 44, 453–464.

    Article  CAS  Google Scholar 

  22. Dedoussis, G. V. Z., Kaliora, A. C., & Andrikopoulos, N. K. (2005). Cell Biology International, 29, 884–889.

    Article  CAS  Google Scholar 

  23. Kubo, I., Chen, Q. X., & Nihei, K. I. (2003). Food Chemistry, 81, 241–247.

    Article  CAS  Google Scholar 

  24. Kim, J. H., Mahoney, N., Chan, K. L., Molyneux, R. J., & Campbell, B. C. (2006). Applied Microbiology and Biotechnology, 70, 735–739.

    Article  CAS  Google Scholar 

  25. Serafini, M., Laranjinha, J. A. N., Almeida, L. M., & Maiani, G. (2000). The Journal of Nutritional Biochemistry, 11, 585–590.

    Article  CAS  Google Scholar 

  26. Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., et al. (2002). The American Journal of Medicine, 113, 71s–88s.

    Article  CAS  Google Scholar 

  27. Kim, Y. H., An, E. S., Song, B. K., Kim, D. S., & Chelikani, R. (2003). Biotechnology Letters, 25, 1521–1524.

    Article  CAS  Google Scholar 

  28. Kobayashi, S. (1999). Journal of Polymer Science. Part A, Polymer Chemistry, 37, 3041–3056.

    Article  CAS  Google Scholar 

  29. Uyama, H., & Kobayashi, S. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19, 117–127.

    Article  Google Scholar 

  30. Masuoka, N., & Kubo, I. (2004). Biochimica et Biophysica Acta, 1688, 245–249.

    CAS  Google Scholar 

  31. Kubo, I., Kinst-Hori, I., & Yokokawa, Y. (1994). Journal of Natural Products, 57, 545–551.

    Article  CAS  Google Scholar 

  32. Ha, T. J., & Kubo, I. (2005). Journal of Agricultural and Food Chemistry, 53, 4350–4354.

    Article  CAS  Google Scholar 

  33. Shobha, S. V., Ramadoss, C. S., & Ravindranath, B. (1994). Journal of Natural Products, 57, 1755–1757.

    Article  CAS  Google Scholar 

  34. Burton, S. G. (2003). Current Organic Chemistry, 7(13), 1317–1331.

    Article  CAS  Google Scholar 

  35. Won, K., Kim, Y. H., An, E. S., Lee, Y. S., & Song, B. K. (2004). Biomacromolecules, 5, 1–4.

    Article  CAS  Google Scholar 

  36. Harvey, P. J., Schoemaker, H. E., & Palmer, J. M. (1986). FEBS Letters, 195, 242–246.

    Article  CAS  Google Scholar 

  37. Malick, L. E., & Wilson, R. B. (1975). Stain Technology, 50, 265–269.

    CAS  Google Scholar 

  38. Rozee, K. R., Cooper, D., Lam, K., & Costerton, J. W. (1982). Applied and Environmental Microbiology, 43, 1451–1463.

    CAS  Google Scholar 

  39. Ikeda, R., Sugihara, J., Uyama, H., & Kobayashi, S. (1998). Polymer International, 47, 295–301.

    Article  CAS  Google Scholar 

  40. Guevin, P. R. (1995). Journals of Coating Technology, 67, 61–65.

    CAS  Google Scholar 

  41. Briandet, R., Herry, J., & Bellon-Fontaine, M. (2001). Colloids and Surfaces. B, Biointerfaces, 21, 299–310.

    Article  CAS  Google Scholar 

  42. Teixeira, P., & Oliveira, R. (1999). Journal of Adhesion Science and Technology, 13, 1287–1294.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The present research has been conducted by the funding support from National Science Foundation (CTS-0626022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Shik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelikani, R., Kim, Y.H., Yoon, DY. et al. Enzymatic Polymerization of Natural Anacardic Acid and Antibiofouling Effects of Polyanacardic Acid Coatings. Appl Biochem Biotechnol 157, 263–277 (2009). https://doi.org/10.1007/s12010-008-8284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8284-2

Keywords

Navigation