Skip to main content
Log in

Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate-k-carrageenan beads

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 23 October 2008

Abstract

The recombinant Escherichia coli γ-glutamyltranspeptidase (EcGGT) was immobilized in Ca-alginate-k-carrageenan beads. Effects of alginate concentration, amount of loading enzyme, and bead size on the entrapped activity were investigated. Optimum alginate concentration for EcGGT immobilization was found to be 2% (w/v). Using a loading enzyme concentration of 1.5 mg/g alginate, maximum enzyme activity was observed. With increase in bead size from 1.9 to 3.1 mm, the immobilization efficiency was decreased significantly because of mass transfer resistance. Thermal stability of the free EcGGT was increased as a result of the immobilization. Ca-alginate-k-carrageenan-EcGGT beads were suitable for up to six repeated uses, losing only 45% of their initial activity. Upon 30 days of storage the preserved activity of free and immobilized enzyme were found as 4% and 68%, respectively. The synthesis of l-theanine was performed in 50 mM Tris–HCl buffer (pH 10) containing 25 mM l-glutamine, 40 mM ethylamine, and 1.5 mg EcGGT/g alginate at 40°C for 12 h, and a conversion rate of 27% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Stability of biocatalysts. Current Opinion in Chemical Biology, 11, 220–225.

    Article  CAS  Google Scholar 

  2. Roy, I., Sharma, S., & Gupta, M. N. (2004). Smart biocatalysts: Design and applications. Advances in Biochemical Engineering/Biotechnology, 86, 159–189.

    CAS  Google Scholar 

  3. Heng, P. W. S., & Chan, L. W. (2002). Effect of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials, 23, 1319–1326.

    Article  Google Scholar 

  4. Heng, P. W. S., Chan, L. W., & Jin, Y. (2002). Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics, 242, 255–258.

    Article  Google Scholar 

  5. Smidsrød, O., & Skjäk-Bræk, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.

    Article  Google Scholar 

  6. Mittal, A., Khurana, S., Singh, H., & Kamboj, R. C. (2005). Characterization of dipeptidylpeptidase IV (DPP IV) immobilized in Ca alginate beads. Enzyme and Microbial Technology, 37, 318–323.

    Article  CAS  Google Scholar 

  7. Mondal, K., Mehta, P., Mehta, B. R., Varandani, D., & Gupta, M. N. (2006). A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency. Biochimica et Biophysica Acta, 1764, 1080–1086.

    CAS  Google Scholar 

  8. Şahin, F., Demirel, G., & Tümtürk, H. (2005). A novel matrix for the immobilization of acetylcholinesterase. International Journal of Biological Macromolecules, 37, 148–153.

    Article  CAS  Google Scholar 

  9. Sarder, M., Roy, I., & Gupta, M. N. (2003). A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan. Biotechnology Progress, 19, 1654–1658.

    Article  CAS  Google Scholar 

  10. Zhu, H., Srivastava, R., Brown, J. Q., & McShane, M. J. (2005). Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity. Bioconjugate Chemistry, 16, 1451–1458.

    Article  CAS  Google Scholar 

  11. Tate, S. S., & Meister, A. (1981). γ-Glutamyltranspeptidase: Catalytic, structural and functional aspects. Molecular and Cellular Biochemistry, 39, 357–368.

    Article  CAS  Google Scholar 

  12. Taniguchi, N., & Ikeda, Y. (1998). γ-Glutamyltranspeptidase: Catalytic mechanism and gene expression. Advances in Enzymology and Related Areas in Molecular Biology, 72, 239–278.

    Article  CAS  Google Scholar 

  13. Harding, C. O., Williams, P., Wagner, E., Chang, D. S., Wild, K., Colwell, R. E., et al. (1997). Mice with genetic γ-glutamyltranspeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. Journal of Biological Chemistry, 272, 12560–12567.

    Article  CAS  Google Scholar 

  14. Suzuki, H., Kumagai, H., Echigo, T., & Tochikura, T. (1989). DNA sequence of the Escherichia coli K-12 γ-glutamyltranspeptidase gene ggt. Journal of Bacteriology, 171, 5169–5172.

    CAS  Google Scholar 

  15. Suzuki, H., & Kumagai, H. (2002). Autocatalytic processing of γ-glutamyltranspeptidase. Journal of Biological Chemistry, 277, 43536–43543.

    Article  CAS  Google Scholar 

  16. Suzuki, H., Kumagai, H., & Tochikura, T. (1986). γ-Glutamyltranspeptidase from Escherichia coli K-12: Purification and properties. Journal of Bacteriology, 168, 1325–1331.

    CAS  Google Scholar 

  17. Suzuki, H., Yamada, C., & Kato, K. (2007). γ-Glutamyl compounds and their enzymatic production using bacterial γ-glutamyltranspeptidase. Amino Acids, 32, 333–340.

    Article  CAS  Google Scholar 

  18. Juneja, L. R., Chu, D., Okubo, T., Nagato, Y., & Yokogoshi, H. (1999). l-Theanine: A unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science and Technology, 10, 199–204.

    Article  CAS  Google Scholar 

  19. Sasaoka, K., Kito, M., & Onishi, Y. (1965). Some properties of the theanine synthesizing enzyme in tea seedlings. Agricultural and Biological Chemistry, 29, 984–988.

    CAS  Google Scholar 

  20. Kakuda, T., Yanase, H., Utsunomiya, K., Nozawa, A., Unno, T., & Kataoka, K. (2000). Protective effects of γ-glutamylethylamide (theanine) on ischemic delayed neuronal death in gerbils. Neuroscience Letters, 289, 189–192.

    Article  CAS  Google Scholar 

  21. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). l-Theanine reduces psychological and physiological stress responses. Biological Psychology, 74, 39–45.

    Article  Google Scholar 

  22. Yokogashi, H., Kato, Y., Sagesaka, M. Y., Mastuura, T. T., Kakuda, T., & Takeuchi, N. (1995). Reduction effect of theanine of blood pressure and brain 5-hydroxyindoles in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 59, 615–618.

    Article  Google Scholar 

  23. Lichtenstein, N. (1942). Preparation of g-alkylamides of glutamic acid. Journal of the American Chemical Society, 64, 1021–1022.

    Article  CAS  Google Scholar 

  24. Matsuura, T., & Kakuda, T. (1990). Effects of precursor, temperature, and illumination of theanine accumulation in tea callus. Agricultural and Biological Chemistry, 54, 2283–2286.

    CAS  Google Scholar 

  25. Sasaoka, K., Kito, M., & Onishi, Y. (1964). Synthesis of theanine by pea seed acetone powder extract. Agricultural and Biological Chemistry, 28, 318–324.

    CAS  Google Scholar 

  26. Tachiki, T., Suzuki, H., Wakisaka, S., Yano, T., & Tochikura, T. (1986). Production of γ-glutamyl-methyl-amide and γ-glutamylethylamide by coupling of baker’s yeast preparations and bacterial glutaminase synthetase. Journal of General and Applied Microbiology, 32, 545–548.

    Article  CAS  Google Scholar 

  27. Tachiki, T., Yamada, T., Mizuno, K., Ueda, M., Shiode, J., & Fukami, H. (1998). γ-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine and γ-glutamylmethylamide. Bioscience, Biotechnology, and Biochemistry, 62, 1279–1283.

    Article  CAS  Google Scholar 

  28. Suzuki, H., Izuka, S., Miyakawa, N., & Kumagai, H. (2002). Enzymatic production of theanine, an “umami” component of tea, from glutamine and ethylamine with bacterial γ-glutamyltranspeptidase. Enzyme and Microbial Technology, 31, 884–889.

    Article  CAS  Google Scholar 

  29. Yao, Y. F., Weng, Y. M., Hu, H. Y., Ku, K. L., & Lin, L. L. (2006). Expression optimization and biochemical characterization of a recombinant γ-glutamyltranspetidase from Escherichia coli novablue. Protein Journal, 25, 431–441.

    Article  CAS  Google Scholar 

  30. Ishiye, M., & Niwa, M. (1992). Bacterial γ-glutamyltranspeptidases: Comparison of Escherichia coli and Pseudomonas γ-glutamyltranspeptidase. FEMS Microbiology Letters, 76, 235–241.

    CAS  Google Scholar 

  31. Suzuki, H., Kumagai, H., Echigo, T., & Tochikura, T. (1988). Molecular cloning of Escherichia coli K-12 ggt and rapid isolation of γ-glutamyltranspeptidase. Biochemical and Biophysical Research Communications, 150, 33–38.

    Article  CAS  Google Scholar 

  32. Orlowski, M., & Meister, A. (1963). γ-Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of L- and D-γ-glutamyltranspeptidase activities. Biochimica et Biophysica Acta, 73, 679–681.

    Article  CAS  Google Scholar 

  33. Bradford, M. M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  34. Fothergill, J. E., & Nairn, R. C. (1961). Purification of fluorescent protein conjugates: Comparison of charcoal and sephadex. Nature (London), 192, 1073–1074.

    Article  CAS  Google Scholar 

  35. Lammli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680–685.

    Article  Google Scholar 

  36. Farag, A. M., & Hassan, M. A. (2004). Purification, characterization, and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34, 85–93.

    Article  CAS  Google Scholar 

  37. Douméche, B., Heinemann, M., Büchs, J., Hartmeier, W., & Ansorge-Schumacher, M. B. (2002). Enzymatic catalysis of gel-stabilized two-phase systems: Improvement of the solvent phase. Journal of Molecular Catalysis. B, Enzymatic, 18, 19–27.

    Article  Google Scholar 

  38. Lipotov, S. Y. (2002). Polymer blends and interpenetrating polymer networks at the interface with solids. Progress in Polymer Science, 27, 1721–1801.

    Article  Google Scholar 

  39. Bajpai, A. K., Bajpai, P., & Shukla, S. (2001). Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. Reactive & Functional Polymers, 50, 9–21.

    Article  Google Scholar 

  40. Kara, F., Demirel, G., & Tümtürk, H. (2006). Immobilization of urease by using chitosan-alginate and poly (acrylamide-co-acrylic acid)/k-carrageenan supports. Bioprocess and Biosystems Engineering, 29, 207–211.

    Article  CAS  Google Scholar 

  41. Tümtürk, H., Karaca, N., Demirel, G., & Şahin, F. (2007). Preparation and application of poly (N,N-dimethylacrylamide-co-acrylamide) and poly (N-isopropylacrylamide-co-acrylamide)/k-carrageenan hydrogels for immobilization of lipase. International Journal of Biological Macromolecules, 40, 281–285.

    Article  CAS  Google Scholar 

  42. Ertan, F., Yagar, H., & Balkan, B. (2007). Optimization of α-amylase immobilization in calcium alginate beads. Preparative Biochemistry & Biotechnology, 37, 195–204.

    Article  CAS  Google Scholar 

  43. Fadnavis, N. W., Sheelu, G., Kumar, B. M., Bhalerao, M. U., & Deshpande, A. A. (2003). Gelation blends with alginate: Gels for lipase immobilization and purification. Biotechnology Progress, 19, 557–564.

    Article  CAS  Google Scholar 

  44. Knezevic, Z., Bobic, S., Milutinovic, A., Obradovic, B., Mojovic, J., & Bugarski, B. (2002). alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochemistry, 38, 313–318.

    Article  CAS  Google Scholar 

  45. Li, S., Hu, J., & Liu, B. (2004). Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems, 77, 25–32.

    Article  CAS  Google Scholar 

  46. Busto, M. D., García-Tramontin, K. E., Ortega, N., & Perez-Mateos, M. (2006). Preparation and properties of an immobilized pectinlyase for the treatment of fruit juices. Bioresource Technology, 97, 1477–1483.

    Article  CAS  Google Scholar 

  47. Vaillant, F., Millan, A., Millan, P., Dornier, M., Decloux, M., & Reynes, M. (2000). Co-immobilized pectinlyase and endocellulase on chitin and nylon supports. Process Biochemistry, 35, 989–996.

    Article  CAS  Google Scholar 

  48. Yahşi, A., Şahin, F., Demirel, G., & Tümtürk, H. (2005). Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels. International Journal of Biological Macromolecules, 36, 253–258.

    Google Scholar 

  49. Kennedy, J. F., & Melo, E. H. M. (1990). Immobilized enzymes and cells. Chemical Engineering Progress, 86, 81–89.

    CAS  Google Scholar 

  50. Munjal, N., & Sawhney, S. K. (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30, 613–619.

    Article  CAS  Google Scholar 

  51. Opara, E. C., & Kendall, W. F. (2002). Immunoisolation techniques for islet cell transplantation. Expert Opinion in Biological Therapy, 2, 503–511.

    Article  Google Scholar 

  52. Thu, B., Bruheim, P., Espevik, T., Smidsrød, O., Soon-Shiong, P., & Skjäk-Bræk, G. (1996). Alginate polycation microcapsules II: Some functional properties. Biomaterials, 17, 1069–1079.

    Article  CAS  Google Scholar 

  53. Darrabic, M., Freeman, B. K., Kendall, W. F., Hobbs, H. A., & Opara, E. C. (2001). Durability of sodium sulfate-treated polylysine-alginate microcapsules. Journal of Biomedical Materials Research, 54, 396–399.

    Article  Google Scholar 

  54. Hobbs, H. A., Kendall, W. F., Darrabic, M., & Opara, E. C. (2001). Prevention of morphological changes in alginate microcapsules for islet xenotransplantation. Journal of Investigative Medicine, 49, 572–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support (NSC 95-2313-B-415-012-MY3) from National Science Council of Taiwan, Republic of China is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Liu Lin.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12010-008-8393-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CP., Lo, HF., Hsu, WH. et al. Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate-k-carrageenan beads. Appl Biochem Biotechnol 150, 157–170 (2008). https://doi.org/10.1007/s12010-008-8244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8244-x

Keywords

Navigation