Skip to main content
Log in

Functionalized Alginate as Immobilization Matrix in Enantioselective l (+) Lactic Acid Production by Lactobacillus delbrucekii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The imperative role of functionalized natural alginate in immobilization of Lactobacillus delbrucekii (NCIM 2365) cells in production of optically pure l (+) lactic acid was studied. L. delbrucekii cells were immobilized in alginate, succinylated alginate and carrageenan to evaluate the bead stability and selectivity towards production of optically pure l (+) lactic acid. The scanning electron microscopic studies of free and immobilized cells show little morphological changes. The present study highlights the use of functionalized alginate-immobilized L. delbrucekii cells in production of l (+) lactic acid in higher yields (0.93 Yp/s in grams) with an improved enantioselectivity (99%). In addition, they further revealed decreased by-product formation (acetic and propionic acid) when compared to free and other immobilized cell fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bulut, S., Elibol, M., & Ozer, D. (2004). Biochemical Engineering Journal, 21, 33–37.

    Article  CAS  Google Scholar 

  2. Agouridis, N., Bekatorou, A., Nigam, P., & Kanellaki, M. (2005). Journal of Agricultural and Food Chemistry, 53, 2546–2551.

    Article  CAS  Google Scholar 

  3. Guoqiang, D., Kaul, R., & Mattiasson, B. (1991). Applied Microbiology and Biotechnology, 36, 309–314.

    Article  Google Scholar 

  4. Audet, P., Paquin, C., & Lacroix, C. (1988). Applied Microbiology and Biotechnology, 29, 11–18.

    Article  CAS  Google Scholar 

  5. Goncalves, L. M. D., Barreto, M. T. O., Xavier, A. M. B. R., Carrondo, M. J. T., & Klein, J. (1992). Applied Microbiology and Biotechnology, 38, 305–311.

    Article  CAS  Google Scholar 

  6. Boyaval, P., & Goulet, J. (1988). Enzyme and Microbial Technology, 10, 725–728.

    Article  CAS  Google Scholar 

  7. Senthuran, A., Senthuran, V., Hatti-Kaul, R., & Mattiasson, B. (1999). Journal of Biotechnology, 73, 61–70.

    Article  CAS  Google Scholar 

  8. Lamboley, L., Lacroix, C., Artignan, J. M., Champagne, C. P., & Vuillemard, J. C. (1999). Biotechnology Progress, 15, 646–654.

    Article  CAS  Google Scholar 

  9. Lamboley, L., Lacroix, C., Sodini, I., Lemay, M. J., & Champagne, C. P. (2001). Biotechnology Progress, 17, 1071–1078.

    Article  CAS  Google Scholar 

  10. Shapiro, L., & Cohen, S. (1997). Biomaterials, 18, 583–590.

    Article  CAS  Google Scholar 

  11. Phillips, D. L., Xing, J., Chong, C. K., Liu, H., & Corke, H. (2000). Journal of Agricultural and Food Chemistry, 48, 5105–5108.

    Article  CAS  Google Scholar 

  12. Macedo, M. G., Champagne, C. P., Vuillemard, J. C., & Lacroix, C. (1999). International Dairy Journal, 9, 437–445.

    Article  Google Scholar 

  13. Le-Tien, C., Millette, M., Mateescu, M. A., & Lacroix, M. (2004). Biotechnology and Applied Biochemistry, 39, 347–354.

    Article  CAS  Google Scholar 

  14. Wurzburg, O. B. (1964). In R. L. Alhistler (Ed.) Methods in carbohydrate chemistry (pp. 286–288). New York: Academic Press.

    Google Scholar 

  15. Bashan, Y. (1986). Applied and Environmental Microbiology, 51, 1089–1098.

    Google Scholar 

  16. John J. Bozzola., & Lonnie D. Russell. (1991) Electron Microscopy: Principles and Techniques for Biologists, Jones & Bartlett Pub ISBN-10: 0867201266.

  17. Lee, K. Y., Bouhadir, K. H., & Mooney, D. J. (2000). Macromolecules, 33, 97–101.

    Article  CAS  Google Scholar 

  18. Lee, H. J., Xie, Y., Koo, Y. M., & Wang, N. H. L. (2004). Biotechnology Progress, 20, 179–192.

    Article  CAS  Google Scholar 

  19. Hofvendahl, K., & Hahn-Hagerdal, B. (2000). Enzyme and Microbial Technology, 26, 87–107.

    Article  CAS  Google Scholar 

  20. Narita, J., Nakahara, S., Fukuda, H., & Kondo, A. (2004). Journal of Biosciences and Bioengineering, 97, 423–425.

    CAS  Google Scholar 

  21. Patel, M. A., Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2005). Biotechnology Progress, 21, 1453–1460.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this investigation acknowledge Dr. Sanjay Nene, Scientist, NCL, Pune for providing L. delbrucekii culture, and Dr. Y Yogeshwara Rao and Dr. Meenakshi Singh of CSIR, New Delhi for financial support under NMITLI programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhaskar Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, C.S., Prakasham, R.S., Rao, A.B. et al. Functionalized Alginate as Immobilization Matrix in Enantioselective l (+) Lactic Acid Production by Lactobacillus delbrucekii . Appl Biochem Biotechnol 149, 219–228 (2008). https://doi.org/10.1007/s12010-007-8052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8052-8

Keywords

Navigation