Skip to main content
Log in

Antiwetting and low-surface-energy behavior of cardanol-based polybenzoxazine-coated cotton fabrics for oil–water separation

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In the present work, the surface behavior of cotton fabrics coated with a series of bio-based polybenzoxazines is explored. Herein, we report the design and synthesis of bio-based benzoxazine monomers (C-x) using cardanol (C) and seven different amines (x = ba, ha, dda, oda, ddm, jef, and fa). The molecular structures of the benzoxazine monomers have been confirmed using FTIR and NMR analyses. The microstructure of the polybenzoxazine-coated cotton fabrics observed from FE-SEM reveals that formation of rough nanostructure is influenced by molecular structure of monomers. Further, surface analysis shows that poly(C-dda)-coated cotton fabric offers superior water contact angle (WCA = 155° ± 3) with low sliding angle (6°). Also, poly(C-dda)-coated cotton fabric delivers the lowest surface energy (14.1 mN/m) and high resistance against acidic and alkaline media. Subsequently, oil–water separation investigation shows that the poly(C-dda)-coated cotton fabric yields 99% of separation efficiency with flux value of 7200 L/m2h. Thus, the cardanol-based polybenzoxazine-coated cotton fabrics prepared in the present work can find application in the field of oil–water separation due to their superior water-repellent nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sasaki, K, Tenjimbayashi, M, Manabe, K, Shiratori, S, “Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.” ACS Appl. Mater. Interfaces, 8 651–659 (2016)

    CAS  Google Scholar 

  2. Lahiri, SK, Zhang, P, Zhang, C, Liu, L, “Robust Fluorine-Free and Self-Healing Superhydrophobic Coatings by H3BO3 Incorporation with SiO2-Alkyl-Silane@PDMS on Cotton Fabric.” ACS Appl. Mater. Interfaces, 11 10262–10275 (2019)

    CAS  Google Scholar 

  3. Ge, M, Cao, C, Liang, F, Liu, R, Zhang, Y, Zhang, W, Zhu, T, Yi, B, Tang, Y, Lai, Y, “A “PDMS-in-Water” Emulsion Enables Mechanochemically Robust Superhydrophobic Surfaces with Self-healing Nature.” Nanoscale Horiz., 5 65–73 (2020)

    CAS  Google Scholar 

  4. Dong, X, Gao, S, Huang, J, Li, S, Zhu, T, Cheng, Y, Zhao, Y, Chen, Z, Lai, Y, “A Self-roughened and Biodegradable Superhydrophobic Coating with UV Shielding, Solar-induced Self-healing and Versatile Oil-Water Separation Ability.” J. Mater. Chem. A., 7 2122–2128 (2019)

    CAS  Google Scholar 

  5. Gao, S, Dong, X, Huang, J, Li, S, Li, Y, Chen, Z, Lai, Y, “Rational Construction of Highly Transparent Superhydrophobic Coatings Based on a Non-particle, Fluorine-Free and Water-Rich System for Versatile Oil-Water Separation.” Chem. Eng. J., 333 621–629 (2018)

    CAS  Google Scholar 

  6. Bhushan, B, “Bioinspired Oil-Water Separation Approaches for Oil Spill Clean-up and Water Purification.” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377 20190120 (2019)

    CAS  Google Scholar 

  7. Xue, Z, Wang, S, Lin, L, Chen, L, Liu, M, Feng, L, Jiang, L, “A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation.” Adv. Mater., 23 4270–4273 (2011)

    CAS  Google Scholar 

  8. Xue, Z, Cao, Y, Liu, N, Feng, L, Jiang, L, “Special Wettable Materials for Oil/Water Separation.” J. Mater. Chem. A., 2 2445–2460 (2014)

    CAS  Google Scholar 

  9. Wang, CF, Wang, YT, Tung, PH, Kuo, SW, Lin, CH, Sheen, YC, Chang, FC, “Stable Superhydrophobic Polybenzoxazine Surfaces over a Wide pH Range.” Langmuir, 22 8289–8292 (2006)

    CAS  Google Scholar 

  10. Rajamanikam, R, Pichaimani, P, Kumar, M, Muthukaruppan, A, “Optical and Thermomechanical Behavior of Benzoxazine Functionalized ZnO Reinforced Polybenzoxazine Nanocomposites.” Polym. Compos., 3 1881–1889 (2017)

    Google Scholar 

  11. Zhang, W, Lu, X, Xin, Z, Zhou, C, “Development of a Superhydrophobic Polybenzoxazine Surface with Self-cleaning and Reversible Water Adhesion Properties.” RSC Adv., 6 106054–106063 (2016)

    CAS  Google Scholar 

  12. Wang, CF, Su, YC, Kuo, SW, Huang, CF, Sheen, YC, Chang, FC, “Low-Surface-Free-Energy Materials Based on Polybenzoxazines.” Angew. Chem. Int. Ed., 45 2248–2251 (2006)

    CAS  Google Scholar 

  13. Revathi, R, Prabunathan, P, Kumar, M, Alagar, M, “Studies on Graphene Oxide–Reinforced Polybenzoxazine Nanocomposites.” High Perform. Polym., 28 425–435 (2016)

    CAS  Google Scholar 

  14. Gogoi, N, Rastogi, D, Jassal, M, Agrawal, AK, “Low-Surface-Energy Materials Based on Polybenzoxazines for Surface Modification of Textiles.” J. Text Inst., 105 1212–1220 (2014)

    CAS  Google Scholar 

  15. Zhang, T, Yan, H, Fang, Z, Yuping, E, Wu, T, Chen, F, “Superhydrophobic and Conductive Properties of Carbon Nanotubes/Polybenzoxazine Nanocomposites Coated Ramie Fabric Prepared by Solution-Immersion Process.” Appl. Surf. Sci., 309 218–224 (2014)

    CAS  Google Scholar 

  16. Zhang, W, Lu, X, Xin, Z, Zhou, C, “A Self-cleaning Polybenzoxazine/TiO2 Surface with Superhydrophobicity and Superoleophilicity for Oil/Water Separation.” Nanoscale, 7 (46) 19476–19483 (2015)

    CAS  Google Scholar 

  17. Caldona, EB, De Leon, ACC, Thomas, PG, Naylor, DF, Pajarito, BB, Advincula, RC, “Superhydrophobic Rubber-Modified Polybenzoxazine/SiO2 Nanocomposite Coating with Anticorrosion, Anti-Ice, and Superoleophilicity Properties.” Ind. Eng. Chem. Res., 56 1485–1497 (2017)

    CAS  Google Scholar 

  18. Li, Y, Yu, Q, Yin, X, Xu, J, Cai, Y, Han, L, Huang, H, Zhou, Y, Tan, Y, Wang, L, Wang, H, “Fabrication of Superhydrophobic and Superoleophilic Polybenzoxazine-Based Cotton Fabric for Oil–Water Separation.” Cellulose, 25 6691–6704 (2018)

    CAS  Google Scholar 

  19. Lehmler, HJ, Liu, B, Gadogbe, M, Bao, W, “Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014.” ACS Omega, 3 6523–6532 (2018)

    CAS  Google Scholar 

  20. Okada, H, Tokunaga, T, Liu, X, Takayanagi, S, Matsushima, A, Shimohigashi, Y, “Direct Evidence Revealing Structural Elements Essential for the High Binding Ability of Bisphenol A to Human Estrogen-Related Receptor-γ.” Environ. Health Perspect., 116 32–38 (2008)

    CAS  Google Scholar 

  21. Manoj, M, Kumaravel, A, Mangalam, R, Prabunathan, P, Hariharan, A, Alagar, M, “Exploration of High Corrosion Resistance Property of Less Hazardous Pyrazolidine-Based Benzoxazines in Comparison with Bisphenol-F Derivatives.” J. Coat. Technol. Res., (2020). https://doi.org/10.1007/s11998-019-00312-4

    Article  Google Scholar 

  22. Hariharan, A, Prabunathan, P, Kumaravel, A, Manoj, M, Alagar, M, “Bio-Based Polybenzoxazine Composites for Oil-Water Separation, Sound Absorption and Corrosion Resistance Applications.” Polym. Test., 86 106443 (2020)

    CAS  Google Scholar 

  23. Hariharan, A, Prabunathan, P, Subramanian, SS, Kumaravel, M, Alagar, M, “Blends of Chalcone Benzoxazine and Bio-benzoxazines Coated Cotton Fabrics for Oil-Water Separation and Bio-silica Reinforced Nanocomposites for Low-k Applications.” J. Polym. Environ., 28 598–613 (2020)

    CAS  Google Scholar 

  24. Prabunathan, P, Vasanthakumar, A, Manoj, M, Hariharan, A, Alagar, M, “Polypyrrole Inter-layered Low Temperature Curing Benzoxazine Matrices with Enhanced Thermal and Dielectric Properties.” J. Polym. Res., 27 1–14 (2020)

    Google Scholar 

  25. Prabunathan, P, Thennarasu, P, Song, JK, Alagar, M, “Achieving Low Dielectric, Surface Free Energy and UV Shielding Green Nanocomposites via Reinforcing Bio-silica Aerogel with Polybenzoxazine.” New J. Chem., 41 5313–5321 (2017)

    CAS  Google Scholar 

  26. Yao, H, Lu, X, Xin, Z, Zhang, H, Li, X, “A Durable Bio-based Polybenzoxazine/SiO2 Modified Fabric with Superhydrophobicity and Superoleophilicity for Oil/Water Separation.” Sep. Purif. Technol., 229 115792 (2019)

    Google Scholar 

  27. Rao, BS, Palanisamy, A, “Monofunctional Benzoxazine from Cardanol for Bio-composite Applications.” React. Funct. Polym., 71 148–154 (2011)

    CAS  Google Scholar 

  28. Lu, R, Gan, W, Wu, BH, Zhang, Z, Guo, Y, Wang, HF, “C-H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol (n = 1–8) Interfaces.” J. Phys. Chem. B, 109 14118–14129 (2005)

    CAS  Google Scholar 

  29. Rao, BS, Palanisamy, A, “A New Thermo Set System Based on Cardanol Benzoxazine and Hydroxy Benzoxazoline with Lower Cure Temperature.” Prog. Org. Coat., 74 427–434 (2012)

    CAS  Google Scholar 

  30. Parveen, AS, Thirukumaran, P, Sarojadevi, M, “Low Dielectric Materials from Fluorinated Polybenzoxazines.” Polym. Adv. Technol., 25 1538–1545 (2014)

    CAS  Google Scholar 

  31. Bonnaud, L, Chollet, B, Dumas, L, Peru, AA, Flourat, AL, Allais, F, Dubois, P, “High-Performance Bio-Based Benzoxazines from Enzymatic Synthesis of Diphenols.” Macromol. Chem. Phys., 220 1800312 (2019)

    Google Scholar 

  32. Zhang, T, Wang, J, Feng, T, Wang, H, Ramdani, N, Derradji, M, Xu, X, Liu, W, Tang, T, “A Novel High Performance Oxazine Derivative: Design of Tetrafunctional Monomer, Step-wise Ring-opening Polymerization, Improved Thermal Property and Broadened Processing Window.” RSC Adv., 5 33623–33631 (2015)

    CAS  Google Scholar 

  33. Lin, RC, Kuo, SW, “Well-defined Benzoxazine/Triphenylamine-Based Hyperbranched Polymers with Controlled Degree of Branching.” RSC Adv., 8 13592–13611 (2018)

    CAS  Google Scholar 

  34. Manickam, M, Pichaimani, P, Arumugam, H, Muthukaruppan, A, “Synthesis of Nontoxic Pyrazolidine-Based Benzoxazine-Coated Cotton Fabric for Oil-Water Separation.” Ind. Eng, Chem. Res., 58 21419–21430 (2020)

    Google Scholar 

  35. Shukla, S, Lochab, B, “Role of Higher Aromatic Content in Modulating Properties of Cardanol Based Benzoxazines.” Polymer (Guildf), 99 684–694 (2016)

    CAS  Google Scholar 

  36. Rao, BS, Surendra, P, “Synthesis and Characterization of Difunctional Benzoxazines from Aromatic Diester Diamine Containing Varying Length of Aliphatic Spacer Group: Polymerization, Thermal and Viscoelastic Characteristics.” Eur. Polym. J., 77 139–154 (2016)

    CAS  Google Scholar 

  37. Allen, DJ, Ishida, H, “Polymerization of Linear Aliphatic Diamine-Based Benzoxazine Resins Under Inert and Oxidative Environments.” Polymer (Guildf), 48 6763–6772 (2007)

    CAS  Google Scholar 

  38. Thennarasu, P, Prabunathan, P, Senthilkumar, M, “Development of Biomass-Derived Functionalized Activated Carbon-Coated and Polyaniline-Grafted Cotton Fabric with Enhanced Ultraviolet Resistance.” J. Ind. Text., 47 1609–1625 (2018)

    CAS  Google Scholar 

  39. Basak, S, Samanta, KK, Chattopadhyay, SK, “Fire Retardant Property of Cotton Fabric Treated with Herbal Extract.” J. Text. Inst., 106 1338–1347 (2015)

    CAS  Google Scholar 

  40. Balachandran, VS, Jadhav, SR, Vemula, PK, John, G, “Recent Advances in Cardanol Chemistry in a Nutshell: From a Nut to Nanomaterials.” Chem. Soc. Rev., 42 427–438 (2013)

    CAS  Google Scholar 

  41. Arumugam, H, Krishnan, S, Chavali, M, Muthukaruppan, A, “Cardanol Based Benzoxazine Blends and Bio-silica Reinforced Composites: Thermal and Dielectric Properties.” New J. Chem., 42 4067–4080 (2018)

    CAS  Google Scholar 

  42. Cheng, M, He, H, Zhu, H, Guo, W, Chen, W, Xue, F, Zhou, S, Chen, X, Wang, S, “Preparation and Properties of pH-Responsive Reversible-Wettability Biomass Cellulose-Based Material for Controllable Oil/Water Separation.” Carbohydr. Polym., 203 246–255 (2019)

    CAS  Google Scholar 

  43. Jeevahan, J, Chandrasekaran, M, Britto Joseph, G, Durairaj, RB, Mageshwaran, G, “Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges.” J. Coat. Technol. Res., 15 231–250 (2018)

    CAS  Google Scholar 

  44. Jin, M, Li, S, Wang, J, Liao, M, Zhao, Y, “Controllable Fabrication of Organosilane Nano-architectured Surfaces with Tunable Wettability.” Appl. Surf. Sci., 258 7552–7555 (2012)

    CAS  Google Scholar 

  45. Reshmi, CR, Sundaran, SP, Juraij, A, Athiyanathil, S, “Fabrication of Superhydrophobic Polycaprolactone/Beeswax Electrospun Membranes for High-Efficiency Oil/Water Separation.” RSC Adv., 7 2092–2102 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the DST-SERB (TAR/2019/000234), India, and the PSG Management for their financial and moral support. Also, the authors acknowledge the SIF, VIT-Vellore, for providing NMR facility and CLIF, University of Kerala, for providing XPS facility. In addition, the authors acknowledge Mr. M. Venkatesan, SIF, VIT, for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Prabunathan or M. Alagar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2161 kb)

Supplementary material 2 (MP4 122323 kb)

Supplementary material 3 (MP4 79158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabunathan, P., Elumalai, P., Dinesh Kumar, G. et al. Antiwetting and low-surface-energy behavior of cardanol-based polybenzoxazine-coated cotton fabrics for oil–water separation. J Coat Technol Res 17, 1455–1469 (2020). https://doi.org/10.1007/s11998-020-00365-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00365-w

Keywords

Navigation