Skip to main content
Log in

Encapsulation of Sargassum boveanum Algae Extract in Nano-liposomes: Application in Functional Mayonnaise Production

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, brown algae extract (BAE) was encapsulated in nano-liposomes. Antibacterial activities of free and encapsulated (in nano-liposomes, BAE-NLs) BAE were evaluated by a micro-dilution method. The results indicated that encapsulation of BAE causes an enhancement of its antibacterial efficiency (about 50%) against P. aeruginosa, E. coli, and B. cereus. Different formulations of mayonnaise were prepared including positive controls (sample containing 200 mg/kg butylated hydroxytoluene (BHT-200), or 1000 mg/kg sodium benzoate (SB-1000)) and samples containing 1000 mg/kg of free and encapsulated BAE. Also, pH, color attributes, lipid oxidation, microbial growth, and sensory characteristics of the samples were monitored during four months of storage at ambient temperature. At the end of storage, BAE-NLs and BHT-200 mayonnaises had significantly lower peroxide value and thiobarbituric acid reactive substances than the control and free BAE (p < 0.05). The color attributes, including lightness, redness, and yellowness of mayonnaise, were undesirably changed by the addition of free BAE. Total viable and fungal counts of the samples incorporated with BAE-NLs and SB-1000 presented a pronounced decrease in comparison with control and samples containing free BAE at the end of shelf-life. Free BAE had an unpleasant effect on color, taste, and overall acceptability of mayonnaise, but the assessor acceptability of samples was remarkably improved after fortification with BAE-NLs. To conclude, nano-encapsulation is an appreciable approach to enhance the bioactivities of BAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., & Shahin, R. (2019). Effects of tocopherol, rosemary essential oil and Ferulago angulata extract on oxidative stability of mayonnaise during its shelf life: A comparative study. Food Chemistry, 285, 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Altunkaya, A., Hedegaard, R. V., Harholt, J., Brimer, L., Gökmen, V., & Skibsted, L. H. (2013). Oxidative stability and chemical safety of mayonnaise enriched with grape seed extract. Food & Function, 4(11), 1647–1653.

    Article  CAS  Google Scholar 

  • Anonymous. (2019). Mayonnaise market: Global industry trends, share, size, growth, opportunity and forecast 2019-2024. Publisher: IMARC Services Pvt. Ltd., URL: https://www.marketresearch.com/IMARC-v3797/Mayonnaise-Global-Trends-Share-Size-12454464/.

  • AOCS. (1998). Peroxide value acetic acid-chloroform method Cd 8–53. In D. Firestone (Ed.), Official methods and recommended practices of the American Oil Chemists' Society. Champaign III: AOCS.

  • Armendáriz-Barragán, B., Zafar, N., Badri, W., Galindo-Rodríguez, S. A., Kabbaj, D., Fessi, H., & Elaissari, A. (2016). Plant extracts: from encapsulation to application. Expert Opinion on Drug Delivery, 13(8), 1165–1175.

    Article  PubMed  Google Scholar 

  • Bajpai, V. K., Sharma, A., & Baek, K. H. (2013). Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, 32(2), 582–590.

    Article  CAS  Google Scholar 

  • Balboa, E. M., Conde, E., Moure, A., Falqué, E., & Domínguez, H. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138(2-3), 1764–1785.

    Article  CAS  PubMed  Google Scholar 

  • Cardenia, V., Waraho, T., Rodriguez-Estrada, M. T., McClements, D. J., & Decker, E. A. (2011). Antioxidant and prooxidant activity behavior of phospholipids in stripped soybean oil-in-water emulsions. Journal of the American Oil Chemists' Society, 88(9), 1409–1416.

    Article  CAS  Google Scholar 

  • CLSI (Clinical and Laboratory Standards Institute). (2010). Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100- S20. URL http://clsi.org.

  • Codex Alimentarius Commission. (2003). Working paper on elaboration of a regional standard for microbiological levels in foods. Egypt. URL http://www.fao.org/fileadmin/user_upload/gmfp/docs/Codex%20working%20paper%20on%20elaboration%20of%20a%20regional%20standard%20for%20microbiological%20levels%20in%20foodstuffs%20(CX-NEA%2003-16)%201.pdf.

  • Dalmoro, A., Bochicchio, S., Lamberti, G., Bertoncin, P., Janssens, B., & Barba, A. A. (2019). Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Advances, 9(34), 19800–19812.

    Article  CAS  Google Scholar 

  • Depree, J., & Savage, G. (2001). Physical and flavour stability of mayonnaise. Trends in Food Science and Technology, 12(5-6), 157–163.

    Article  CAS  Google Scholar 

  • European Comission Regulation (EC). (2005a). No. 2073/2005 on microbiological criteria for foodstuffs (OJ L 338,22.12.2005, p.1). URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02005R2073-20140601&from=EN.

  • European Comission Regulation (EC) (2005b). SANCO/1252/2001 Rev. 11. Discussion paper on strategy for setting microbiological criteria for foodstuffs in community legislation. Official Journal of the European Union. URL https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_fh_microbio_criteria-discussion_paper_en.pdf.

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  CAS  Google Scholar 

  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science and Technology, 21(10), 510–523.

    Article  CAS  Google Scholar 

  • Fialová, J., Chumchalová, J., Miková, K., & Hrůšová, I. (2008). Effect of food preservatives on the growth of spoilage lactobacilli isolated from mayonnaise-based sauces. Food Control, 19(7), 706–713.

    Article  Google Scholar 

  • Ganji, S., & Sayyed-Alangi, S. Z. (2017). Encapsulation of ginger ethanolic extract in nanoliposome and evaluation of its antioxidant activity on sunflower oil. Chemical Papers, 71(9), 1781–1789.

    Article  CAS  Google Scholar 

  • Ge, Y., & Ge, M. (2016). Distribution of Melaleuca alternifolia essential oil in liposomes with Tween 80 addition and enhancement of in vitro antimicrobial effect. Journal of Experimental Nanoscience, 11(5), 345–358.

    Article  CAS  Google Scholar 

  • Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201.

    Article  CAS  Google Scholar 

  • Goli, A. H., Barzegar, M., & Sahari, M. A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chemistry, 92(3), 521–525.

    Article  CAS  Google Scholar 

  • Gorji, S. G., Calingacion, M., Smyth, H. E., & Fitzgerald, M. (2019). Effect of natural antioxidants on lipid oxidation in mayonnaise compared with BHA, the industry standard. Metabolomics, 15(8), 106.

    Article  Google Scholar 

  • Gorji, S. G., Smyth, H. E., Sharma, M., & Fitzgerald, M. (2016). Lipid oxidation in mayonnaise and the role of natural antioxidants: A review. Trends in Food Science and Technology, 56, 88–102.

    Article  Google Scholar 

  • Gortzi, O., Lala, S., Chinou, I., & Tsaknis, J. (2007). Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules, 12(5), 932–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Q., Gao, S., Sun, Y., Gao, Y., Wang, X., & Zhang, Z. (2016). Antioxidant efficacy of rosemary ethanol extract in palm oil during frying and accelerated storage. Industrial Crops and Products, 94, 82–88.

    Article  CAS  Google Scholar 

  • Gupta, S., Cox, S., Rajauria, G., Jaiswal, A. K., & Abu-Ghannam, N. (2012). Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts. Food and Bioprocess Technology, 5(5), 1907–1916.

    Article  CAS  Google Scholar 

  • Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51, 224–233.

    Article  CAS  Google Scholar 

  • Hermund, D., Jacobsen, C., Chronakis, I. S., Pelayo, A., Yu, S., Busolo, M., Lagaron, J. M., Jónsdóttir, R., Kristinsson, H. G., Akoh, C. C., & García-Moreno, P. J. (2019). Stabilization of fish oil-loaded electrosprayed capsules with seaweed and commercial natural antioxidants: Effect on the oxidative stability of capsule-enriched mayonnaise. European Journal of Lipid Science and Technology, 121(4), 1800396.

    Article  Google Scholar 

  • Hierholtzer, A., Chatellard, L., Kierans, M., Akunna, J. C., & Collier, P. J. (2013). The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. Journal of Applied Microbiology, 114(4), 964–973.

    Article  CAS  PubMed  Google Scholar 

  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23(3), 543–597.

    Article  CAS  Google Scholar 

  • Jacobsen, C., Sørensen, A. D. M., Holdt, S. L., Akoh, C. C., & Hermund, D. B. (2019). Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annual Review of Food Science and Technology, 10(1), 541–568.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, D., Wani, A. A., Singh, D. P., & Sogi, D. (2011). Shelf life enhancement of butter, ice-cream, and mayonnaise by addition of lycopene. International Journal of Food Properties, 14(6), 1217–1231.

    Article  CAS  Google Scholar 

  • Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399.

    Article  CAS  Google Scholar 

  • Kim, Y. S., & Lee, J. H. (2017). Effects of hydrolyzed rapeseed cake extract on the quality characteristics of mayonnaise dressing. Journal of Food Science, 82(12), 2847–2856.

    Article  CAS  PubMed  Google Scholar 

  • Kishk, Y., & Elsheshetawy, H. E. (2013). Effect of ginger powder on the mayonnaise oxidative stability, rheological measurements, and sensory characteristics. Annals of Agricultural Sciences, 58(2), 213–220.

    Article  Google Scholar 

  • Kokabi, M., & Yousefzadi, M. (2015). Checklist of the marine macroalgae of Iran. Botanica Marina, 58(4), 307–320.

    Article  Google Scholar 

  • Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, H., Ko, J. H., & Shin, H. S. (2015). Evaluation of antioxidant activity and oxidative stability of spice-added mayonnaise. Food Science and Biotechnology, 24(4), 1285–1292.

    Article  CAS  Google Scholar 

  • Li, C. Y., Kim, H. W., Li, H., Lee, D. C., & Rhee, H. I. (2014). Antioxidative effect of purple corn extracts during storage of mayonnaise. Food Chemistry, 152, 592–596.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S., Cheung, P., Ooi, V., & Ang, P. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50(13), 3862–3866.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S., Choi, A. H., Kwon, M., Joung, E. J., Shin, T., Lee, S. G., Kim, N. G., & Kim, H. R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Liolios, C., Gortzi, O., Lalas, S., Tsaknis, J., & Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry, 112(1), 77–83.

    Article  CAS  Google Scholar 

  • Low, W., Martin, C., Hill, D., & Kenward, M. (2013). Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Letters in Applied Microbiology, 57(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J., & Decker, E. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8), 1270–1282.

    Article  CAS  Google Scholar 

  • Miller, S. I. (2016). Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio, 7(5), e01541–e01516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moubayed, N. M., Al Houri, H. J., Al Khulaifi, M. M., & Al Farraj, D. A. (2017). Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi Journal of Biological Sciences, 24(1), 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular and Molecular Biology Letters, 10(4), 711–719.

    CAS  PubMed  Google Scholar 

  • Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M., & Bassami, M. R. (2010). Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chemistry, 120(3), 765–770.

    Article  CAS  Google Scholar 

  • Pagnussatt, F. A., de Lima, V. R., Dora, C. L., Costa, J. A. V., Putaux, J.-L., & Badiale-Furlong, E. (2016). Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food Chemistry, 211, 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against gram-positive and gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies, 36, 287–293.

    Article  CAS  Google Scholar 

  • Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2018). Nanoliposomes containing pistachio green hull’s phenolic compounds as natural bio-preservatives for mayonnaise. European Journal of Lipid Science and Technology, 120(9), 1800086.

    Article  Google Scholar 

  • Roostaee, M., Barzegar, M., Sahari, M. A., & Rafiee, Z. (2017). The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: Studying in soybean oil. Journal of Food Science and Technology, 54(11), 3620–3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savaghebi, D., Barzegar, M., & Mozafari, M. R. (2019). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science and Nutrition, 8(1), 299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahidi, F., & Zhong, Y. (2005). Lipid oxidation: measurement methods. In C. Scrimgeour (Ed.), Bailey’s industrial oil and fat products, edible oil and fat products: chemistry, properties, and health effects (Vol. 1, pp. 357–385). Hoboken: Wiley & sons. Inc.

  • Shanmughapriya, S., Manilal, A., Sujith, S., Selvin, J., Kiran, G. S., & Natarajaseenivasan, K. (2008). Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Annals of Microbiology, 58(3), 535–541.

    Article  Google Scholar 

  • Steinhoff, F. S., Graeve, M., Wiencke, C., Wulff, A., & Bischof, K. (2011). Lipid content and fatty acid consumption in zoospores/developing gametophytes of Saccharina latissima (Laminariales, Phaeophyceae) as potential precursors for secondary metabolites as phlorotannins. Polar Biology, 34(7), 1011–1018.

    Article  Google Scholar 

  • Sun-Waterhouse, D., & Wadhwa, S. S. (2013). Industry-relevant approaches for minimising the bitterness of bioactive compounds in functional foods: A review. Food and Bioprocess Technology, 6(3), 607–627.

    Article  CAS  Google Scholar 

  • Tananuwong, K., & Tewaruth, W. (2010). Extraction and application of antioxidants from black glutinous rice. LWT-Food Science and Technology, 43(3), 476–481.

    Article  CAS  Google Scholar 

  • Tavakoli, H., Hosseini, O., Jafari, S. M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231–9240.

    Article  CAS  PubMed  Google Scholar 

  • Worrasinchai, S., Suphantharika, M., Pinjai, S., & Jamnong, P. (2006). β-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise. Food Hydrocolloids, 20(1), 68–78.

    Article  CAS  Google Scholar 

Download references

Funding

This study is funded by the Research Council of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Barzegar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaghebi, D., Ghaderi-Ghahfarokhi, M. & Barzegar, M. Encapsulation of Sargassum boveanum Algae Extract in Nano-liposomes: Application in Functional Mayonnaise Production. Food Bioprocess Technol 14, 1311–1325 (2021). https://doi.org/10.1007/s11947-021-02638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02638-7

Keywords

Navigation