Skip to main content
Log in

Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.)

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The study deals with first time report on encapsulation of chemically characterized Anethum graveolens essential oil within chitosan nanomatrix (Nm-AGEO) using ionic gelation technique to enhance the antimicrobial, antiaflatoxigenic, antioxidant, and in situ efficacy against stored rice biodeterioration. GC-MS analysis of AGEO revealed dill apiol (33.79%), carvone (27.19%), and limonene (13.76%) as major components. Nm-AGEO characterization through scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FT-IR) confirmed successful encapsulation of AGEO within chitosan as an encapsulant. Biphasic and sustained release pattern reflected controlled volatilization of bioactives, helpful in shelf-life extension of stored food commodities. Nm-AGEO caused significant impairment in fungal ergosterol biosynthesis and enhanced leakage of vital ions indicating destabilization in plasma membrane integrity. Inhibition of methylglyoxal (aflatoxin inducer) biosynthesis by Nm-AGEO confirmed novel antiaflatoxigenic mechanism of action, suggesting its future exploitation for development of aflatoxin-resistant rice varieties through green transgenics. Nm-AGEO induced impairment in antioxidant defense enzymes (SOD, CAT) and non-enzymatic defense biomolecules GSH and GSSG revealing biochemical mechanism of action. In silico modeling of carvone and limonene with Omt-A and Ver-1 genes suggested molecular mechanism of aflatoxin inhibition. Treatment of rice samples with Nm-AGEO caused significant protection from aflatoxin B1 contamination and lipid peroxidation without altering organoleptic properties. Moreover, favorable safety profile for mammalian system and non-phytotoxic nature of chitosan-fabricated AGEO nanoemulsion-based delivery system recommend attention of food industries for its formulation as potential green preservative.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Carol Stream: Allured Publishing Corporation.

    Google Scholar 

  • Adisa, R. A., Kolawole, N., Sulaimon, L. A., Brai, B., & Ijaola, A. (2019). Alterations of antioxidant status and mitochondrial succinate dehydrogenase activity in the liver of Wistar strain albino rats treated with by ethanol extracts of Annona senegalensis Pers (Annonaceae) Stem Bark. Toxicological Research, 35(1), 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28.

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi, Z., Saber, M., Akbari, A., & Mahdavinia, G. R. (2018). Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicology and Environmental Safety, 161, 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Ali, N. (2019). Aflatoxins in rice: worldwide occurrence and public health perspectives. Toxicology Reports, 6, 1188–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 151, 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Amiri, A., Mousakhani-Ganjeh, A., Amiri, Z., Guo, Y. G., Singh, A. P., & Kenari, R. E. (2020). Fabrication of cumin loaded-chitosan particles: characterized by molecular, morphological, thermal, antioxidant, and anticancer properties as well as its utilization in food system. Food Chemistry, 310, 125821.

    Article  CAS  PubMed  Google Scholar 

  • Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219.

    Article  CAS  Google Scholar 

  • Badawy, M. E., Marei, G. I. K., Rabea, E. I., & Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185–200.

    Article  CAS  PubMed  Google Scholar 

  • Bahmankar, M., Mortazavian, S. M. M., Tohidfar, M., Noori, S. A. S., Darbandi, A. I., & Al-fekaiki, D. F. (2019). Chemotypes and morpho-physiological characters affecting essential oil yield in Iranian cumin landraces. Industrial Crops and Products, 128, 256–269.

    Article  CAS  Google Scholar 

  • Cao, J. Q., Pang, X., Guo, S. S., Wang, Y., Geng, Z. F., Sang, Y. L., Guo, P. J., & Du, S. S. (2019). Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. International Biodeterioration and Biodegradation, 140, 1–8.

    Article  CAS  Google Scholar 

  • Chaudhari, A. K., Singh, V. K., Das, S., Singh, B. K., & Dubey, N. K. (2020). Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food and Bioprocess Technology, 13(8), 1462–1477.

    Article  CAS  Google Scholar 

  • Choi, H., Lee, J., Chang, Y. S., Woo, E. R., & Lee, D. G. (2013). Isolation of (-)-olivil-9′-O-β-d-glucopyranoside from Sambucus williamsii and its antifungal effects with membrane-disruptive action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(8), 2002–2006.

    Article  CAS  Google Scholar 

  • Choi, S., Seo, H. S., Lee, K. R., Lee, S., Lee, J., & Lee, J. (2019). Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chemistry, 276, 572–582.

    Article  CAS  PubMed  Google Scholar 

  • Clemente, I., Aznar, M., & Nerín, C. (2019). Synergistic properties of mustard and cinnamon essential oils for the inactivation of foodborne moulds in vitro and on Spanish bread. International Journal of Food Microbiology, 298, 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Gündel, S., de Souza, M. E., Quatrin, P. M., Klein, B., Wagner, R., Gündel, A., de Almeida Vaucher, R., Santos, R. C. V., & Ourique, A. F. (2018). Nanoemulsions containing Cymbopogon flexuosus essential oil: development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microbial Pathogenesis, 118, 268–276.

    Article  PubMed  Google Scholar 

  • Dammak, I., Hamdi, Z., El Euch, S. K., Zemni, H., Mliki, A., Hassouna, M., & Lasram, S. (2019). Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1, 8-cineole against Aspergillus carbonarius. Industrial Crops and Products, 128, 85–93.

    Article  CAS  Google Scholar 

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, P., Sharma, S., & Dubey, N. K. (2019). Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International Journal of Biological Macromolecules, 133, 294–305.

    Article  CAS  PubMed  Google Scholar 

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, A., Saha, A. K., Ray Chaudhury, S., Prakash, B. & Dubey, N. K. (2020a). Assessment of chemically characterised Myristica fragrans essential oil against fungi contaminating stored scented rice and its mode of action as novel aflatoxin inhibitor. Natural Product Research, 34, 1611–1615.

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2020b). Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. LWT-Food Science and Technology, 130, 109495.

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021a). Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chemistry, 344, 128574.

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021b). Eugenol loaded chitosan nanoemulsion for food protection and inhibition of aflatoxin B1 synthesizing genes based on molecular docking. Carbohydrate Polymers, 255, 117339.

  • Dubey, N. K., Kumar, A., & Kumar, A. (2017). Efficacy of Luvunga scandens Roxb. essential oil as antifungal, aflatoxin suppressor and antioxidant. Journal of Food Technology and Preservation, 1, 37–41.

    Google Scholar 

  • Dwivedy, A. K., Singh, V. K., Prakash, B., & Dubey, N. K. (2018). Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food and Chemical Toxicology, 111, 102–113.

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili, A., & Asgari, A. (2015). In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 81, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  CAS  Google Scholar 

  • Feyzioglu, G. C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Science and Technology, 70, 104–110.

    Article  CAS  Google Scholar 

  • Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201.

    Article  CAS  Google Scholar 

  • Gómez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204.

    Article  Google Scholar 

  • Grintzalis, K., Vernardis, S. I., Klapa, M. I., & Georgiou, C. D. (2014). Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology, 80(18), 5561–5571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydrate Polymers, 236, 116075.

    Article  CAS  PubMed  Google Scholar 

  • Hasani, S., Ojagh, S. M., & Ghorbani, M. (2018). Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: study on its physical and structural characteristics. International Journal of Biological Macromolecules, 115, 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Hasheminejad, N., & Khodaiyan, F. (2020). The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chemistry, 309, 125520.

    Article  CAS  PubMed  Google Scholar 

  • Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Hemmatkhah, F., Zeynali, F., & Almasi, H. (2020). Encapsulated cumin seed essential oil-loaded active papers: characterization and evaluation of the effect on quality attributes of beef hamburger. Food and Bioprocess Technology, 13(3), 533–547.

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, M. R., & Maji, T. K. (2008). Preparation of genipin cross-linked chitosan-gelatin microcapsules for encapsulation of Zanthoxylum limonella oil (ZLO) using salting-out method. Journal of Microencapsulation, 25(6), 414–420.

    Article  CAS  PubMed  Google Scholar 

  • Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51(1), 45–66.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Lan, W., Sameen, D. E., Ahmed, S., Qin, W., Zhang, Q., Chen, H., Dai, J., He, L., & Liu, Y. (2020). Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. International Journal of Biological Macromolecules, 160, 340–351.

    Article  CAS  PubMed  Google Scholar 

  • Kalagatur, N. K., Nirmal Ghosh, O. S., Sundararaj, N., & Mudili, V. (2018). Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Frontiers in Pharmacology, 9, 610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karam, T. K., Ortega, S., Nakamura, T. U., Auzély-Velty, R., & Nakamura, C. V. (2020). Development of chitosan nanocapsules containing essential oil of Matricaria chamomilla L. for the treatment of cutaneous leishmaniasis. International Journal of Biological Macromolecules, 162, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, N., Chahal, K. K., Kumar, A., Singh, R., & Bhardwaj, U. (2019). Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. Journal of Food Biochemistry, 43(4), e12782.

  • Kong, J., Zhang, Y., Ju, J., Xie, Y., Guo, Y., Cheng, Y., & Yao, W. (2019). Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chemistry, 285, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • Kou, X. H., Guo, W. L., Guo, R. Z., Li, X. Y., & Xue, Z. H. (2014). Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv.“Huang guan” during storage. Food and Bioprocess Technology, 7(3), 671–681.

    Article  CAS  Google Scholar 

  • Liu, K., Li, Y., Chen, F., & Yong, F. (2017). Lipid oxidation of brown rice stored at different temperatures. International Journal of Food Science and Technology, 52(1), 188–195.

    Article  CAS  Google Scholar 

  • Liu, Y., Tang, T., Duan, S., Qin, Z., Zhao, H., Wang, M., Li, C., Zhang, Z., Liu, A., Han, G., & Wu, D. (2020). Applicability of rice doughs as promising food materials in extrusion-based 3D printing. Food and Bioprocess Technology, 13(3), 548–563.

    Article  CAS  Google Scholar 

  • López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., & Cortez-Rocha, M. O. (2018). Schinus molle L. essential oil-loaded chitosan nanoparticles: preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT-Food Science and Technology, 96, 597–603.

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Measurement of protein with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  Google Scholar 

  • Lv, C., Wang, P., Ma, L., Zheng, M., Liu, Y., & Xing, F. (2018). Large-scale comparative analysis of eugenol-induced/repressed genes expression in Aspergillus flavus using RNA-seq. Frontiers in Microbiology, 9, 1116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Hernández, G. B., Amodio, M. L., & Colelli, G. (2017). Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innovative Food Science and Emerging Technologies, 41, 56–63.

    Article  Google Scholar 

  • Molamohammadi, H., Pakkish, Z., Akhavan, H. R., & Saffari, V. R. (2020). Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food and Bioprocess Technology, 13(1), 121–131.

    Article  CAS  Google Scholar 

  • Motwani, S. K., Chopra, S., Talegaonkar, S., Kohli, K., Ahmad, F. J., & Khar, R. K. (2008). Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. European Journal of Pharmaceutics and Biopharmaceutics, 68(3), 513–525.

    CAS  PubMed  Google Scholar 

  • Murugan, K., Anandaraj, K., & Al-Sohaibani, S. (2013). Antiaflatoxigenic food additive potential of Murraya koenigii: an in vitro and molecular interaction study. Food Research International, 52(1), 8–16.

    Article  CAS  Google Scholar 

  • Oliveira, É. R., Fernandes, R. V., Botrel, D. A., Carmo, E. L., Borges, S. V., & Queiroz, F. (2018). Study of different wall matrix biopolymers on the properties of spray-dried pequi oil and on the stability of bioactive compounds. Food and Bioprocess Technology, 11(3), 660–679.

    Article  CAS  Google Scholar 

  • Peretto, G., Du, W. X., Avena-Bustillos, R. J., Berrios, J. D. J., Sambo, P., & McHugh, T. H. (2017). Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology, 10(1), 165–174.

    Article  CAS  Google Scholar 

  • Pinto, E., Pina-Vaz, C., Salgueiro, L., Gonçalves, M. J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., & Martinez-de-Oliveira, J. (2006). Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 55(10), 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  • Porep, J. U., Mrugala, S., Nikfardjam, M. S. P., & Carle, R. (2015). Online determination of ergosterol in naturally contaminated grape mashes under industrial conditions at wineries. Food and Bioprocess Technology, 8(7), 1455–1464.

    Article  CAS  Google Scholar 

  • Radhakrishnan, V. S., Mudiam, M. K. R., Kumar, M., Dwivedi, S. P., Singh, S. P., & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International Journal of Nanomedicine, 13, 2647–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar, V., Gunasekaran, C., Dharmaraj, J., Chinnaraj, P., Paul, C. A., & Kanithachristy, I. (2020). Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. Pesticide Biochemistry and Physiology, 166, 104566.

    Article  CAS  PubMed  Google Scholar 

  • Ruberto, G., & Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69(2), 167–174.

    Article  CAS  Google Scholar 

  • Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30(2), 386–392.

    Article  CAS  Google Scholar 

  • Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids, 52, 369–377.

    Article  CAS  Google Scholar 

  • Shao, X., Cheng, S., Wang, H., Yu, D., & Mungai, C. (2013). The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. Journal of Applied Microbiology, 114(6), 1642–1649.

    Article  CAS  PubMed  Google Scholar 

  • Sharifimehr, S., Soltanizadeh, N., & Hossein Goli, S. A. (2019). Effects of edible coating containing nano-emulsion of Aloe vera and eugenol on the physicochemical properties of shrimp during cold storage. Journal of the Science of Food and Agriculture, 99(7), 3604–3615.

    Article  CAS  PubMed  Google Scholar 

  • Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules, 126, 731–742.

    Article  CAS  PubMed  Google Scholar 

  • Singh, V. K., Das, S., Dwivedy, A. K., Rathore, R., & Dubey, N. K. (2019). Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor. Postharvest Biology and Technology, 153, 87–95.

    Article  CAS  Google Scholar 

  • Sun, Q., Shang, B., Wang, L., Lu, Z., & Liu, Y. (2016). Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Applied Microbiology and Biotechnology, 100(3), 1355–1364.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Huang, B., Luo, X., Zeng, H., Ban, X., He, J., & Wang, Y. (2012). The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chemistry, 130(3), 520–527.

    Article  CAS  Google Scholar 

  • Upadhyay, N., Singh, V. K., Dwivedy, A. K., Das, S., Chaudhari, A. K., & Dubey, N. K. (2018). Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT- Food Science and Technology, 92, 395–403.

    Article  CAS  Google Scholar 

  • Usha, T., Goyal, A. K., Lubna, S., Prashanth, H., Mohan, T. M., Pande, V., & Middha, S. K. (2014). Identification of anti-cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pacific Journal of Cancer Prevention, 15(23), 10345–10350.

    Article  PubMed  Google Scholar 

  • Viacava, G. E., Ayala-Zavala, J. F., González-Aguilar, G. A., & Ansorena, M. R. (2018). Effect of free and microencapsulated thyme essential oil on quality attributes of minimally processed lettuce. Postharvest Biology and Technology, 145, 125–133.

    Article  CAS  Google Scholar 

  • Vieira, B. B., Mafra, J. F., da Rocha Bispo, A. S., Ferreira, M. A., de Lima Silva, F., Rodrigues, A. V. N., & Evangelista-Barreto, N. S. (2019). Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (Colossoma macropomum) fillets. LWT-Food Science and Technology, 116, 108546.

    Article  CAS  Google Scholar 

  • Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology, 10(3), 503–511.

    Article  CAS  Google Scholar 

  • Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578–585.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, S. K., Singla-Pareek, S. L., Ray, M., Reddy, M. K., & Sopory, S. K. (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337(1), 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., & Im, Y. J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6(1), 1–13.

    Google Scholar 

  • Yili, A., Yimamu, H., Maksimov, V. V., Aisa, H. A., Veshkurova, O. N., & Salikhov, S. I. (2006). Chemical composition of essential oil from seeds of Anethum graveolens cultivated in China. Chemistry of Natural Compounds, 42(4), 491–492.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, X., & Kang, H. (2019). Chitosan coatings incorporated with free or nano-encapsulated Paulownia tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT-Food Science Technology, 116, 108580.

    Article  CAS  Google Scholar 

  • Zheng, F., Zheng, W., Li, L., Pan, S., Liu, M., Zhang, W., Liu, H., & Zhu, C. (2017). Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food and Bioprocess Technology, 10(11), 1937–1945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Somenath Das is thankful to the Council of Scientific and Industrial Research (CSIR) [File No.: 09/013(0774)/2018-EMR-I], New Delhi, India, for the financial support. The authors wish to thank the head and coordinator CAS in Botany, DST-FIST, DST-PURSE, ISLS, and CIFC-IIT, Banaras Hindu University (BHU) for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawal Kishore Dubey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Singh, V.K., Dwivedy, A.K. et al. Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.). Food Bioprocess Technol 14, 831–853 (2021). https://doi.org/10.1007/s11947-021-02589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02589-z

Keywords

Navigation