Skip to main content
Log in

3D Extrusion Printability of Rice Starch and Optimization of Process Variables

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Three-dimensional extrusion printing is an additive manufacturing approach with numerous emerging applications in the food industry. In this research, the effect of nozzle size (1.2 to 1.7 mm), print speed (800 to 2200 mm/min), and motor speed (120 to 240 rpm) on the printability of rice starch were studied. Uniformity and ease of extrusion were considered, and the printed constructs were carefully observed for thread quality, binding property, finishing, texture, layer definition, shape, dimensional stability, and appearance. The rheological behavior of the material supply was studied, and the scientific rationale behind the printability of starch is discussed in detail. Printing rice starch at higher motor speeds (180–240 rpm) with lower printing speeds (800–1500 mm/min) resulted in better printability. The results of this study would be a foundation for future 3D food printing studies using rice starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alex, J., Dhanalakshmi, J., & Ambedkar, B. (2016). Experimental investigation on rice husk ash as cement replacement on concrete production. Construction and Building Materials, 127, 353–362.

    Article  CAS  Google Scholar 

  • Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering, 109691.

  • ASABE Standards. (2008). S319.4: Method of determining and expressing fineness of feed materials by sieving. St. Joseph, Mich.: ASABE.

  • Ashwar, B. A., Gani, A., Shah, A., & Masoodi, F. A. (2017). Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International Journal of Biological Macromolecules, 105(Pt 1), 471–477.

    Article  CAS  Google Scholar 

  • Asmeda, R., Noorlaila, A., & Norziah, M. H. (2016). Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour. Food Chemistry, 191, 45–51.

    Article  CAS  Google Scholar 

  • Bhat, F. M., & Riar, C. S. (2019). Effect of chemical composition, granule structure and crystalline form of pigmented rice starches on their functional characteristics. Food Chemistry, 297, 124984.

    Article  CAS  Google Scholar 

  • Cameron, D. K., Wang, Y.-J., & Moldenhauer, K. A. (2007). Comparison of starch physicochemical properties from medium-grain rice cultivars grown in California and Arkansas. Starch-Stärke, 59(12), 600–608.

    Article  CAS  Google Scholar 

  • Cao, C., Shen, M., Hu, J., Qi, J., Xie, P., & Zhou, Y. (2020). Comparative study on the structure-properties relationships of native and debranched rice starch. CyTA-Journal of Food, 18(1), 84–93.

    Article  CAS  Google Scholar 

  • Chen, H., Xie, F., Chen, L., & Zheng, B. (2019). Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering, 244, 150–158.

    Article  CAS  Google Scholar 

  • Chuanxing, F., Qi, W., Hui, L., Quancheng, Z., & Wang, M. (2018). Effects of pea protein on the properties of potato starch-based 3D printing materials. International Journal of Food Engineering, 14(3).

  • Daiuto, E., Cereda, M., Sarmento, S., & Vilpoux, O. (2005). Effects of extraction methods on yam (Dioscorea alata) starch characteristics. Starch-Stärke, 57(3–4), 153–160.

    Article  CAS  Google Scholar 

  • Dankar, I., Pujolà, M., El Omar, F., Sepulcre, F., & Haddarah, A. (2018). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology, 11(11), 2021–2031.

    Article  CAS  Google Scholar 

  • De La Hera, E., Gomez, M., & Rosell, C. M. (2013). Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydrate Polymers, 98(1), 421–427.

    Article  Google Scholar 

  • Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2017). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering., 220, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015.

    Article  Google Scholar 

  • Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65–75.

    Article  Google Scholar 

  • Dong, X., Huang, Y., Pan, Y., Wang, K., Prakash, S., & Zhu, B. (2019). Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi. Journal of Texture Studies., 50(4), 316–324.

    Article  Google Scholar 

  • Doublier, J. L. (1981). Rheological studies on starch flow behaviour of wheat starch pastes. Starch-Starke, 33(12), 415–420.

    Article  CAS  Google Scholar 

  • Eliasson, A. C. (1986). Viscoelastic behaviour during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy-barley starches. Journal of Texture Studies, 17(3), 253–265.

    Article  CAS  Google Scholar 

  • Gayral, M., Fanuel, M., Rogniaux, H., & Dalgalarrondo, M. (2018). The spatiotemporal deposition of lysophosphatidylcholine within starch granules of maize endosperm and its relationships to the expression of genes involved in endoplasmic reticulum – amyloplast lipid trafficking and galactolipid synthesis, (April 2019). https://doi.org/10.1093/pcp/pcy198.

  • Ghazal, A. F., Zhang, M., & Liu, Z. (2019). Spontaneous color change of 3D printed healthy food product over time after printing as a novel application for 4D food printing. Food and Bioprocess Technology, 12(10), 1627–1645.

    Article  CAS  Google Scholar 

  • Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: status and prospects. Journal of Food Engineering, 179, 44–54.

    Article  Google Scholar 

  • Holland, S., Foster, T., Macnaughtan, W., & Tuck, C. (2017). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering., 220, 12–19. https://doi.org/10.1016/j.jfoodeng.2017.06.008.

    Article  CAS  Google Scholar 

  • Horwitz, W., & LATIMER, G. W. (2000). Official methods of analysis of AOAC international 17th edition (pp. 43–44). Gaithersburg: AOAC International.

    Google Scholar 

  • Huang, M., Zhang, M., & Bhandari, B. (2019). Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food and Bioprocess Technology, 12(7), 1185–1196.

    Article  Google Scholar 

  • Juliano, B. O. (1971). A simplified assay for milled rice amylose. Cereal Science Today, 16, 334–360.

  • Kim, H. W., Bae, H. J., & Park, H. J. (2017). Classification of the printability of selected food for 3D printing: development of an assessment method using hydrocolloids as. Journal of Food Engineering. Elsevier B.V. https://doi.org/10.1016/j.jfoodeng.2017.07.017.

  • Kim, H. W., Lee, J. H., Park, S. M., Lee, M. H., Lee, I. W., Doh, H. S., & Park, H. J. (2018). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food Printing. Journal of food science, 83(12), 2923–2932.

  • Keerthana, K., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2020.110116.

  • Krishnaraj, P., Anukiruthika, T., Choudhary, P., Moses, J. A., & Anandharamakrishnan, C. (2019). 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour. Food and Bioprocess Technology, 1–11.

  • Kumar, S., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., & Anandharamakrishnan, C. (2020). Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology., 99, 58–75. https://doi.org/10.1016/j.tifs.2020.02.021.

    Article  CAS  Google Scholar 

  • Lam, C. X. F., Mo, X. M., Teoh, S.-H., & Hutmacher, D. W. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering: C, 20(1–2), 49–56.

    Article  Google Scholar 

  • Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: platform design, optimization and evaluation. Journal of Food Engineering, 215, 13–22.

    Article  CAS  Google Scholar 

  • Le Tohic, C., Sullivan, J. J. O., Drapala, K. P., Chartrin, V., Morrison, A. P., Kerry, J. P., & Kelly, A. L. (2017). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2017.02.003.

  • Li, J., & Nie, S. (2015). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. https://doi.org/10.1016/j.foodhyd.2015.01.035.

    Article  CAS  Google Scholar 

  • Li, M., Pernell, C., & Ferruzzi, M. G. (2018). Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin. Food Hydrocolloids, 77, 843–852.

    Article  CAS  Google Scholar 

  • Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20–27.

    Article  CAS  Google Scholar 

  • Liu, L., Meng, Y., Dai, X., Chen, K., & Zhu, Y. (2019a). 3D printing complex egg white protein objects: properties and optimization. Food and Bioprocess Technology, 12(2), 267–279.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, W., Wang, K., Bao, Y., Mac Regenstein, J., & Zhou, P. (2019b). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: rheological properties and 3D printing performance. Food and Bioprocess Technology, 1–13.

  • Liu, Y., Liang, X., Saeed, A., Lan, W., & Qin, W. (2019c). Properties of 3D printed dough and optimization of printing parameters. Innovative food science & emerging technologies, 54, 9–18.

  • Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Science & Emerging Technologies, 44, 21–29.

    Article  Google Scholar 

  • Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 1–19.

  • Nida, S., Anukiruthika, T., Moses, J. A. & Anandharamakrishnan, C. (2020). 3D printing of grinding and milling fractions of rice husk. Waste and Biomass Valorization, (123456789). https://doi.org/10.1007/s12649-020-01000-w.

  • Okaka, J. C., & Potter, N. N. (1977). Functional and storage properties of cowpea powder-wheat flour blends in breadmaking. Journal of Food Science, 42(3), 828–833.

    Article  CAS  Google Scholar 

  • Prabhakaran, B., & Moses, J. (2016). Pasting characteristics of raw rice flour obtained from various mill types. Advances Ilife Sciences, 5(5), 1605–1609.

    Google Scholar 

  • Prabhuswamy, T., Tamilselvan, K., Michael, M. L., Moses, J. A., & Chinnasamy, A. (2019). Influence of different hydrocolloids on dispersion of sweet basil seeds (Ocimum basilicum) in fruit-flavoured beverages. Croatian Journal of Food Science and Technology, 11(1), 37–43. https://doi.org/10.17508/CJFST.2019.11.1.05.

    Article  Google Scholar 

  • Riaz, M., Akhter, M., Iqbal, M., Ali, S., Khan, R. A. R., Raza, M., … Shahzadi, N. (2018). Estimation of amylose, protein and moisture content stability of rice in multi locations.

    Google Scholar 

  • Rithesh, B., Selvaraj, R., Doraiswamy, U., & Jeyaprakash, P. (2018). Characterization of physio-chemical properties of starch among traditional and commercial varieties of rice ( Oryza sativa L .) using rapid visco analyser characterization of physio-chemical properties of starch among traditional and commercial varieties. International Journal of Current Microbiology and Applied Sciencenternational Journal of Current Microbiology and Applied Science, 7(October), 1490–1503. https://doi.org/10.20546/ijcmas.2018.710.167.

    Article  CAS  Google Scholar 

  • Román, L., Reguilón, M. P., & Gómez, M. (2018). Physicochemical characteristics of sauce model systems: influence of particle size and extruded flour source. Journal of Food Engineering, 219, 93–100.

    Article  Google Scholar 

  • Saikrishna, A., Dutta, S., Subramanian, V., Moses, J. A., & Anandharamakrishnan, C. (2018). Ageing of rice: a review. Journal of Cereal Science, 81, 161–170.

    Article  CAS  Google Scholar 

  • Samli, H. E., Nalbant, V., & Okur, A. A. (2013). Effects of microwave heating on some oil seeds nutrient contents and colour change. Rivista italiana delle sostanze grasse, 90(3), 183–188.

    CAS  Google Scholar 

  • Severini, C., Derossi, A., & Azzollini, D. (2016). Variables affecting the printability of foods: preliminary tests on cereal-based products. Innovative Food Science & Emerging Technologies, 38, 281–291.

    Article  Google Scholar 

  • Shahzad, S. A., Hussain, S., Mohamed, A. A., Alamri, M. S., Akram, A., Qasem, A., & Osman, M. A. (2019). Pasting , thermal , textural and rheological properties of rice starch blended with 6 different hydrocolloid gums. Pakistan Journal of Agricultural Sciences, 56(3), 781–791. https://doi.org/10.21162/PAKJAS/19.6901.

    Article  Google Scholar 

  • Shen, Y., Zhang, N., Xu, Y., Huang, J., Wu, D., Shu, X., et al. (2019). Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 128, 775–781.

    Article  CAS  Google Scholar 

  • Singh, N., Kaur, L., Sandhu, K. S., Kaur, J., & Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 20(4), 532–542.

    Article  CAS  Google Scholar 

  • Sivaramakrishnan, H. P., Senge, B., & Chattopadhyay, P. K. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62(1), 37–45.

    Article  Google Scholar 

  • Sosulski, F., Garratt, M. D., & Slinkard, A. E. (1976). Functional properties of ten legume flours. Canadian Institute of Food Technology Journal.

  • Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615.

    Article  CAS  Google Scholar 

  • Tan, C., Toh, W. Y., Wong, G., & Lin, L. (2018). Extrusion-based 3D food printing--materials and machines.

  • Theagarajan, R., Malur Narayanaswamy, L., Dutta, S., Moses, J. A., & Chinnaswamy, A. (2019). Valorisation of grape pomace (cv. Muscat) for development of functional cookies. International Journal of Food Science & Technology.

  • Varnamkhasti, M. G., Mobli, H., Jafari, A., Keyhani, A. R., Soltanabadi, M. H., Rafiee, S., & Kheiralipour, K. (2008). Some physical properties of rough rice ( Oryza sativa L.) grain, 47, 496–501. https://doi.org/10.1016/j.jcs.2007.05.014.

  • Wang, Y., Wang, L., Shephard, D., Wang, F., & Patindol, J. (2002). Properties and structures of flours and starches from whole , broken , and yellowed rice kernels in a model study properties and structures of flours and starches from whole , broken , and yellowed rice kernels in a model study. Cereal Chemistry, 79((3)(October 2015)), 383–386. https://doi.org/10.1094/CCHEM.2002.79.3.383.

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. 220, 101–108. https://doi.org/10.1016/j.jfoodeng.2017.02.029.

  • Wegrzyn, T. F., Golding, M., & Archer, R. H. (2012). Food layered manufacture: a new process for constructing solid foods. Trends in Food Science & Technology, 27(2), 66–72. https://doi.org/10.1016/j.tifs.2012.04.006.

    Article  CAS  Google Scholar 

  • Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2017). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT - Food Science and Technology., 87, 67–76. https://doi.org/10.1016/j.lwt.2017.08.054.

    Article  CAS  Google Scholar 

  • Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT, 87, 67–76.

    Article  CAS  Google Scholar 

  • Yoo, D., Kim, C., & Yoo, B. (2005). Steady and dynamic shear rheology of rice starch-galactomannan mixtures, 310–318. https://doi.org/10.1002/star.200400390, 57, 7, 310, 318.

    Book  Google Scholar 

  • Zhang, L., Lou, Y., & Schutyser, M. A. I. (2018). 3D printing of cereal-based food structures containing probiotics. Food Structure, 18, 14–22.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the funding received from the Ministry of Food Processing Industries, Govt. of India. The authors also acknowledge the support given by Ms. T. Anukiruthika for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandharamakrishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theagarajan, R., Moses, J.A. & Anandharamakrishnan, C. 3D Extrusion Printability of Rice Starch and Optimization of Process Variables. Food Bioprocess Technol 13, 1048–1062 (2020). https://doi.org/10.1007/s11947-020-02453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02453-6

Keywords

Navigation