Skip to main content
Log in

Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 05 November 2019

This article has been updated

Abstract

A gel-like emulsion stabilized with whey protein was prepared by microfluidization, and the effects of the oil phase fraction on the physical properties of emulsions were studied. The rheological analysis indicated that these emulsions exhibited thixotropic behavior, and their apparent viscosity and solid-like behavior increased with increasing oil fraction from 0.3 to 0.6 (v/v). The microstructures, droplet size distribution, and thermal stability of these emulsions were also characterized using a light microscope, dynamic light scattering (DLS), and differential scanning calorimetry (DSC), respectively. The viscosity of these emulsions increased in an exponential way versus increasing oil fraction and showed good correlation coefficient (R2 > 0.99). The size of droplets in the emulsion increased from 301 ± 3.6 to 597 ± 7.3 nm. The DSC results showed that the crystalline peak of these emulsions gradually decreased from − 15 to − 21 °C and started thawing at ~ 3 °C. Visually, the textures of these emulsions could be transformed from flexible to rigid by changing the oil fraction, which suggests they could have multiple potential applications. Finally, the semi-solid emulsions were fabricated into delicate shapes using extrusion-based 3D food printing. Based on the results obtained, these emulsions may have the potential to be used as a solid-like fat substitute, which could be used in various applications such as cake decoration or customized functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 05 November 2019

    The original version of this article unfortunately contained some mistakes. The Fig. 7 was published with incomplete content due to incorrect image processing.

References

  • Achayuthakan, P., & Suphantharika, M. (2008). Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrate Polymers, 71(1), 9–17.

    Article  CAS  Google Scholar 

  • Boutin, C., Giroux, H. J., Paquin, P., & Britten, M. (2007). Characterization and acidinduced gelation of butter oil emulsions produced from heated whey protein dispersions. International Dairy Journal, 17(6), 696–703.

    Article  CAS  Google Scholar 

  • Brownell, K. D., & Pomeranz, J. L. (2014). The trans-fat ban - food regulation and long-term health. The New England Journal of Medicine, 370(19), 1773–1775.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y., Li, D., Wang, L., Bi, C., & Adhikari, B. (2014). Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels. Carbohydrate Polymers, 108, 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., & Dickinson, E. (1999). Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids and Surfaces B: Biointerfaces, 12(3-6), 373–381.

    Article  CAS  Google Scholar 

  • Dankar, I., Haddaraha, A., Omara, F., Sepulcreb, F., & Pujolà, M. (2018a). Assessing the microstructural and rheological changes induced by food additives on potato puree. Food Chemistry, 240, 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Dankar, I., Pujolà, M., Omar, F., Sepulcre, F., & Haddarah, A. (2018b). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology, 11(11), 2021–2031.

    Article  CAS  Google Scholar 

  • Destribats, M., Rouvet, M., Gehin-Delval, C., Schmitt, C., & Binks, B. P. (2014). Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter, 10(36), 6941–6954.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, E., & Matsumura, Y. (1991). Time-dependent polymerization of β-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. International Journal of Biological Macromolecules, 13(1), 26–30.

    Article  CAS  PubMed  Google Scholar 

  • Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92(4), 1387–1397.

    Article  CAS  PubMed  Google Scholar 

  • Donsì, F., Wang, Y., & Huang, Q. (2011). Freeze–thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocolloids, 25(5), 1327–1336.

    Article  CAS  Google Scholar 

  • Dumay, E. M., Kalichevsky, M. T., & Cheftel, J. C. (1994). High-pressure unfolding and aggregation of beta-lactoglobulin and the baroprotective effects of sucrose. Journal of Agricultural and Food Chemistry, 42(9), 1861–1868.

    Article  CAS  Google Scholar 

  • Feng, Y., & Lee, Y. (2016). Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water pickering emulsion. Food Hydrocolloids, 56, 292–302.

    Article  CAS  Google Scholar 

  • Gharibzahedi, S. M. T., Hernández-Ortega, C., Welti-Chanes, J., Putnik, P., Barba, F. J., Mallikarjunan, K., Escobedo-Avellaneda, Z., & Roohinejad, S. (2019). High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, 87, 307–320.

    Article  CAS  Google Scholar 

  • Hasanvand, E., & Rafe, A. (2018). Rheological and structural properties of rice bran protein-flaxseed (Linum usitatissimum L.) gum complex coacervates. Food Hydrocolloids, 83, 296–307.

    Article  CAS  Google Scholar 

  • Huang, J., Zeng, S., Xiong, S., & Huang, Q. (2016). Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocolloids, 61, 48–56.

    Article  CAS  Google Scholar 

  • Jiao, B., Shi, A., Wang, Q., & Binks, B. P. (2018). High internal phase Pickering emulsions stabilized solely by peanut protein microgel particles with multiple potential applications. Angewandte Chemie, 130(30), 9418–9422. https://doi.org/10.1002/ange.201801350.

    Article  Google Scholar 

  • Lam, S., Velikov, K. P., & Velev, O. D. (2014). Pickering stabilization of foams and emulsions with particles of biological origin. Current Opinion in Colloid & Interface Science, 19(5), 490–500.

    Article  CAS  Google Scholar 

  • Linke, C., & Drusch, S. (2017). Pickering emulsions in foods - opportunities and limitations. Critical Reviews in Food Science and Nutrition, 24, 1–15.

    Google Scholar 

  • Liu, F., & Tang, C. H. (2011). Cold, gel-like whey protein emulsions by microfluidization emulsification: rheological properties and microstructures. Food Chemistry, 127(4), 1641–1647.

    Article  CAS  Google Scholar 

  • Liu, F., & Tang, C. H. (2013). Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. Journal of Agriculture and Food Chemistry, 61(37), 8888–8898.

    Article  CAS  Google Scholar 

  • Liu, F., & Tang, C. H. (2014). Emulsifying properties of soy protein nanoparticles: influence of the protein concentration and/or emulsification process. Journal of Agriculture and Food Chemistry, 62(12), 2644–2654.

    Article  CAS  Google Scholar 

  • Liu, F., & Tang, C. H. (2016). Soy glycinin as food-grade Pickering stabilizers: Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food Hydrocolloids, 60, 606–619.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: printing precision and application in food sector. Trends in Food Science & Technology, 69, 83–94.

    Article  CAS  Google Scholar 

  • Liu, Y. W., Liu, D. S., Wei, G. M., Ma, Y., Bhandarid, B., & Zhou, P. (2018). 3D printed milk protein food simulant: improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science and Emerging Technologies, 49, 116–126.

    Article  CAS  Google Scholar 

  • Liu, L., Meng, Y., Dai, X., Chen, K., & Zhu, Y. (2019a). 3D printing complex egg white protein objects: properties and optimization. Food and Bioprocess Technology, 12, 267–279.

    Article  CAS  Google Scholar 

  • Liu, Y. W., Yu, Y., Liu, C. S., Regenstein, J. M., Liu, X. M., & Zhou, P. (2019b). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT-Food Science and Technology, 102, 338–346.

    Article  CAS  Google Scholar 

  • Ma, J., Lin, Y., Chen, X., Zhao, B., & Zhang, J. (2014). Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids, 38, 119–128.

    Article  CAS  Google Scholar 

  • Manoi, K., & Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocolloids, 23(7), 1837–1847.

    Article  CAS  Google Scholar 

  • Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17–29.

    Article  CAS  Google Scholar 

  • Mozaffarian, D., Jacobson, M. F., & Greenstein, J. S. (2010). Food reformulations to reduce trans fatty acids. The New England Journal of Medicine, 362(21), 2037–2039.

    Article  PubMed  Google Scholar 

  • Nanik, P., Atzejanvander, G., Remko, B., & Johan, V. (2010). New directions towards structure formation and stability of protein-rich foods from globular proteins. Trends in Food Science & Technology, 21(2), 85–94.

    Article  CAS  Google Scholar 

  • Oliete, B., Potin, F., Cases, E., & Saurel, R. (2019). Microfluidization as homogenization technique in pea globulin-based emulsions. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-019-02265-3.

  • Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food Funct, 7(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Peng, X. W., Ren, J. L., Zhong, L. X., Cao, X. F., & Sun, R. C. (2011). Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. Journal of Agriculture and Food Chemistry, 59(2), 570–576.

    Article  CAS  Google Scholar 

  • Pickering, S. U. (1907). Emulsions. Journal of the Chemical Society, Transactions, 91, 2001–2021.

    Article  Google Scholar 

  • Purwanti, N., Smiddy, M., Jan van der Goot, A., de Vries, R., Alting, A., & Boom, R. (2011). Modulation of rheological properties by heat-induced aggregation of whey protein solution. Food Hydrocolloids, 25(6), 1482–1489.

    Article  CAS  Google Scholar 

  • Ramsden, W. (1903). Separation of solids in the surface-layers of solutions and “suspensions”-sreliminary account. Proceedings of the Royal Society of London, 72, 156–164.

    CAS  Google Scholar 

  • Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009). Oil organogels: the fat of the future? Year book of Diagnostic Radiology, 2009, 70–72.

    Article  Google Scholar 

  • Stender, S., Astrup, A., & Dyerberg, J. (2014). Tracing artificial trans fat in popular foods in Europe: a market basket investigation. BMJ Open, 4, 1–7.

    Article  Google Scholar 

  • Sun, J., Zhou, W., Huang, D., Fuh, J., & Hong, G. (2015). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615.

    Article  CAS  Google Scholar 

  • Sun, J., Zhou, W., Huang, D., & Yan, L. (2018). 3D Food Printing: Perspectives. In T. J. Gutiérrez (Ed.), Polymers for Food Applications. Cham: Springer. https://doi.org/10.1007/978-3-319-94625-2_26.

    Chapter  Google Scholar 

  • Tang, C. H., & Liu, F. (2013). Cold, gel-like soy protein emulsions by microfluidization: emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids, 30(1), 61–72.

    Article  CAS  Google Scholar 

  • Tárrega, A., Durán, L., & Costell, E. (2004). Flow behaviour of semi-solid dairy desserts. Effect of temperature. International Dairy Journal, 14(4), 345–353.

    Article  Google Scholar 

  • Van Aken, G. A., & Zoet, F. D. (2000). Coalescence in highly concentrated coarse emulsions. Langmuir, 16(18), 7131–7138.

    Article  CAS  Google Scholar 

  • Voelker, R. (2015). Partially hydrogenated oils are out. The Journal of the American Medical Association, 314(5), 443–443.

    Google Scholar 

  • Wan Mohamad, W. A. F., McNaughton, D., Augustin, M. A., & Buckow, R. (2018). Characterisation of β-carotene partitioning in protein emulsions: effects of pre-treatments, solid fat content and emulsifier type. Food Chemistry, 257, 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. J., Hu, Y. Q., Yin, S. W., Yang, X. Q., Lai, F. R., & Wang, S. Q. (2015). Fabrication and characterization of antioxidant Pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Journal of Agriculture and Food Chemistry, 63(9), 2514–2524.

    Article  CAS  Google Scholar 

  • Wang, C., Fu, X., Tang, C. H., Huang, Q., & Zhang, B. (2017a). Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions. Food Chemistry, 227, 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., He, Z., Zeng, M., Fang, Q., Adhikari, B., & Jie, C. (2017b). Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO 4. Food Chemistry, 221, 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Chen, C., Guo, H., Zhang, H., Yang, Z., & Ren, F. (2018). Casein gel particles as novel soft Pickering stabilizers: the emulsifying property and packing behaviour at the oil-water interface. Food Hydrocolloids, 77, 689–698.

    Article  CAS  Google Scholar 

  • Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymer, 196, 474–482.

    Article  CAS  Google Scholar 

  • Yang, T., Zheng, J., Zheng, B. S., Liu, F., Wang, S., & Tang, C. H. (2018). High internal phase emulsions stabilized by starch nanocrystals. Food Hydrocolloids, 82, 230–238.

    Article  CAS  Google Scholar 

  • Yuan, D. B., Hu, Y. Q., Zeng, T., Yin, S. W., Tang, C. H., & Yang, X. Q. (2017). Development of stable Pickering emulsions/oil powders and Pickering hipes stabilized by gliadin/chitosan complex particles. Food & Function, 8(6), 2220–2230.

    Article  CAS  Google Scholar 

  • Zeng, T., Wu, Z. L., Zhu, J. Y., Yin, S. W., Tang, C. H., Wu, L. Y., & Yang, X. Q. (2017). Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chemistry, 231, 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Zhang, N., Lin, W., & Tang, C. (2017). Freeze-thaw stability of pickering emulsions stabilized by soy and whey protein particles. Food Hydrocolloids, 69, 173–184.

    Article  CAS  Google Scholar 

  • Zou, Y., Yang, X., & Scholten, E. (2018). Rheological behavior of emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 77, 363–371.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2017YFD0400600), the National First-class Discipline Program of Food Science & Technology (JUFSTR20180201), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1815), and China Association for Science and Technology Program (No. 2018CASTQNJL27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised as Figure 7 was updated showing panels E-G.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, W., Wang, K. et al. Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. Food Bioprocess Technol 12, 1967–1979 (2019). https://doi.org/10.1007/s11947-019-02344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02344-5

Keywords

Navigation