Skip to main content
Log in

Microwave-Vacuum Drying of Lactic Acid Bacteria: Influence of Process Parameters on Survival and Acidification Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Freeze drying is one important step in downstream processing of probiotics and starter cultures production and requires a long duration of the drying step, which, therefore, often is the overall production bottleneck. Microwave accelerated vacuum drying already showed promising results in terms of product quality for various food products. However, poor information on drying microorganisms by microwaves is available. The aim of this work was to set up a suitable microwave-vacuum drying process for the conservation of lactic acid bacteria and to investigate the optimum process parameters to achieve dried cultures with high survival and activity. The probiotic Lactobacillus paracasei ssp. paracasei F19 was used as model strain. The influence of the process parameters chamber pressure (7–30 mbar), specific microwave power input (1–5 W/g), and maximum product temperature (30–45 °C) on the main quality parameters survival rate, metabolic activity, and water activity of the dried samples were analyzed. Continuous energy input was shown to act detrimentally to the cells due to extreme temperature rise in the second drying stage. Proper temperature regulation could be obtained by pulsed microwave input according to a maximum set temperature. Intermediate microwave power between 3 and 4 W/g, the lowest tested pressure level of 7 mbar and low product temperatures of 30–35 °C, resulted in the highest survival and activity of the bacterial cells. With these results, it could be shown that microwave-vacuum drying appears as a promising alternative drying technique for the preservation of starter and probiotic cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad, S., Yaghmaee, P., & Durance, T. (2012). Optimization of dehydration of Lactobacillus salivarius using radiant energy vacuum. Food and Bioprocess Technology, 5(3), 1019–1027.

    Article  Google Scholar 

  • Altmeyer, A. (1994). Vakuummikrowellentrocknung in der Pharmazie. Vakuum in der Praxis, 2, 117–121.

    Article  Google Scholar 

  • Bauer S, Foerst P, Kulozik U (2010) Influence of process conditions and protectants on the survival and residual water content of starter and probiotic cultures in low-temperature vacuum drying. 17th International Drying Symposium (IDS 2010), Magdeburg, Germany, 3–6 October 2010

  • Bauer, S., Schneider, S., Behr, J., Kulozik, U., & Foerst, P. (2012). Combined influence of fermentation and drying conditions on survival and metabolic activity of starter cultures and probiotic cultures after low-temperature vacuum drying. Journal of Biotechnology, 159, 351–357.

    Article  CAS  Google Scholar 

  • Berteli, M. N., Marsaiolo Jr., A., & Rodier, E. (2007). Study of a microwave assisted vacuum drying process applied to the granulated pharmaceutical drug hydrochlorthiazide (HCT). J Microwave Power EE, 40(4), 241–250.

    Google Scholar 

  • Chávez, B., & Ledeboer, A. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technology, 25, 1193–1201.

    Article  Google Scholar 

  • Calín-Sánchez, Á., Szumny, A., Figiel, A., Jałoszynski, K., Adamski, M., & Carbonell-Barrachina, Á. A. (2011). Effects of vacuum level and microwave power on rosemary volatile composition during vacuum–microwave drying. Journal of Food Engineering, 103, 219–227.

    Article  Google Scholar 

  • Clary, C. D., Wang, S., & Petrucci, V. E. (2005). Fixed and incremental levels of microwave power application on drying grapes under vacuum. Journal of Food Science, 70, E344–E349.

    Article  CAS  Google Scholar 

  • Clary, C. D., Mejia-Meza, E., Wang, S., et al. (2007). Improving grape quality using microwave vacuum drying associated with temperature control. Journal of Food Science, 72(1), E23–E28.

    Article  CAS  Google Scholar 

  • Cui, Z.-W., Xu, S.-Y., & Sun, D.-W. (2004). Microwave-vacuum drying kinetics of carrot slices. Journal of Food Engineering, 65(2), 157–164.

    Article  Google Scholar 

  • Cui, Z.-W., Xu, S.-Y., Sun, D.-W., et al. (2005). Temperature changes during microwave-vacuum drying of sliced carrots. Drying Technology, 23(5), 1057–1074.

    Article  Google Scholar 

  • Datta, A., & Anantheswaran, R. (2001). Handbook of microwave technology for food applications. Basel: Marcel Dekker.

    Google Scholar 

  • Drouzas, A., & Schubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineering, 28, 203–209.

    Article  Google Scholar 

  • Foerst, P., & Kulozik, U. (2009). A low resolution 1H NMR study to investigate the protective mechanisms of sorbitol during vacuum drying of a probiotic microorganism. Cambridge: RSC Publishing.

    Google Scholar 

  • Foerst, P., & Kulozik, U. (2012). Modelling the dynamic inactivation of the probiotic bacterium L. paracasei ssp. paracasei during low-temperature drying process based on stationary data in concentrated systems. Food and Bioprocess Technology, 5(6), 2419–2427.

    Article  Google Scholar 

  • Fu, N., & Chen, X. D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44, 1127–1149.

    Article  CAS  Google Scholar 

  • Gunasekaran, S. (1999). Pulsed microwave-vacuum of food materials. Drying Technology, 17(3), 395–412.

    Article  Google Scholar 

  • Gunasekaran, S., & Yang, H. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78, 1452–1456.

    Article  Google Scholar 

  • Higl, B., Santivarangkna, S., & Foerst, P. (2008). Bewertung und Optimierung von Gefrier- und Vakuumtrocknungsverfahren in der Herstellung von mikrobiellen Starterkulturen. Chemie Ingenieur Technik, 80(8), 1157–1164.

    Article  CAS  Google Scholar 

  • de Jesus, S. S., & Filho, R. M. (2011). Optimizing drying conditions for the microwave vacuum drying of enzymes. Drying Technology, 29, 1828–1835.

    Article  Google Scholar 

  • Kim, S. S., Shin, S., Chang, K. S., Kim, S. Y., Noh, B., & Bhowmik, S. (1997). Survival of lactic acid bacteria during microwave vacuum-drying of plain yoghurt. Food Science and Technology, 30, 573–577.

    CAS  Google Scholar 

  • King, V., Zall, R., & Ludington, D. (1989). Controlled low-temperature vacuum dehydration - a new approach for low-temperature and low-pressure food drying. Journal of Food Science, 54(6), 1573–1579.

    Article  Google Scholar 

  • King, V., & Su, J. (1993). Dehydration of Lactobacillus acidophilus. Process Biochemistry, 28(47–52).

  • Kwok, B., Hu, C., Durance, T., & Kitts, D. (2004). Dehydration techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt.). Journal of Food Science, 69(3), 122–126.

    Google Scholar 

  • Li, Y., Xu, S. Y., & Sun, D. W. (2007). Preparation of garlic powder with high allicin content by using combined microwave–vacuum and vacuum drying as well as microencapsulation. Journal of Food Engineering, 83, 76–83.

    Article  CAS  Google Scholar 

  • McLoughlin, C. M., McMinn, W. A. M., & Magee, T. R. A. (2003). Microwave drying of multi-component powder systems. Drying Technology, 21(2), 293–309.

  • McMinn, W., McLoughlin, C., & Magee, T. (2005). Microwave-convective drying characteristics of pharmaceutical powders. Powder Technology, 153, 23–33.

    Article  CAS  Google Scholar 

  • Meryman, H. T. (2007). Cryopreservation of living cells: principles and practice. Transfusion, 47, 935–945.

    Article  CAS  Google Scholar 

  • Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of microorganisms by drying: a review. Journal of Microbiological Methods, 66(2), 183–193.

    Article  CAS  Google Scholar 

  • Mousa, N., & Farid, M. (2002). Microwave vacuum drying of banana slices. Drying Technology, 20(10), 2055–2066.

    Article  Google Scholar 

  • Ratti, C., & Kudra, T. (2006). Drying of foamed biological materials: opportunities and challenges. Drying Technology, 24(9), 1101–1108.

    Article  Google Scholar 

  • Regier, M., Knoerzer, K., & Erle, U. (2004). Mikrowellen- und Mikrowellen-Vakuumtrocknung von Lebensmitteln. Chemie Ingenieur Technik, 76(4), 424–431.

    Article  CAS  Google Scholar 

  • Sablani, S. (2006). Drying of fruits and vegetables: retention of nutritional/functional quality. Drying Technology, 24(2), 123–135.

    Article  Google Scholar 

  • Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W., Fondén, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S., & Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics—a review. International Journal of Food Microbiology, 44(1–2), 93–106.

    Article  CAS  Google Scholar 

  • Santivarangkna, C., Kulozik, U., & Foerst, P. (2008). Alternative inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105, 1–13.

    Article  CAS  Google Scholar 

  • Santivarangkna, C., Wenning, M., Foerst, P., & Kulozik, U. (2007). Damage of cell envelope of Lactobacillus helveticus during vacuum drying. Journal of Applied Microbiology, 102(3), 748–756.

    Article  CAS  Google Scholar 

  • Teixeira, P., Castro, H., Mohacsi-Farkas, C., & Kirby, R. (1997). Identification of sites of injury in Lactobacillus bulgaricus during heat stress. Journal of Applied Microbiology, 83(2), 219–226.

    Article  CAS  Google Scholar 

  • Tymczyszyn, E. E., Díaz, M. R., & Gómez-Zavaglia, A. (2008). Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose. Journal of Applied Microbiology, 103, 2410–2419.

  • Xu, Y., Min, Z., & Mujumdar, A. (2004). Studies on hot air and microwave vacuum drying of wild cabbage. Drying Technology, 22(9), 2201–2209.

    Article  Google Scholar 

  • Zayed, G., & Roos, Y. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze drying and storage. Process Biochemistry, 39(9), 1081–1086.

    Article  CAS  Google Scholar 

  • Zhang, M., Tang, J., Mujumdar, A., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science and Technology, 17, 524–534.

    Article  CAS  Google Scholar 

  • Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). Food Science and Technology, 62, 555–563.

    CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn, Project AiF 17477 N). The authors would like to thank Chr. Hansen (Hoersholm, Denmark) for the kind providing of L. paracasei cultures. Püschner Microwaves (Schwanewede, Germany) is thanked for the technical support. Regina Mayer’s technical assistance is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ambros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambros, S., Bauer, S.A.W., Shylkina, L. et al. Microwave-Vacuum Drying of Lactic Acid Bacteria: Influence of Process Parameters on Survival and Acidification Activity. Food Bioprocess Technol 9, 1901–1911 (2016). https://doi.org/10.1007/s11947-016-1768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1768-0

Keywords

Navigation