Skip to main content

Advertisement

Log in

Comparison of Different Mechanical Methods for the Modification of the Egg White Protein Ovomucin, Part A: Physical Effects

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Egg white (EW) is required to be reduced in viscosity and particle size prior to chromatographic fractionation of single EW proteins. This study reports on an assessment of various shear devices for this purpose. Evaluation criteria for the head-to-head comparison of high-pressure homogenization, colloid mill, and toothed disc dispersing machine treatment were the achieved viscosity reduction as well as the network diminution, determined by particle size measurements. It was shown that each of the devices was able to decrease the viscosity by a reduction of fibril size. However, only the high-pressure homogenizer fulfills the requirement to disintegrate the fibrils sufficiently, so that they can be filtered through membranes with a pore size of 0.45 μm, which is indispensable for chromatographic fractionations. Generally, the achieved viscosities decreased with increasing energy input, independently of the specific shear forces resulting from the applied device. Otherwise, there was no direct correlation between the energy density and the extent of fibril destruction, indicating that the kind of energy depending on the respective device with its specific destruction mechanism was not decisive. To sum up, this study provides profound knowledge concerning the effects on the EW structure that result from different mechanical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., et al. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control. doi:10.1016/j.foodcont.2012.01.046.

    Google Scholar 

  • Becher, P. (1977). Emulsions: theory and practice (2nd edn). Huntington, N.Y: R.E. Krieger Pub. Co.

  • Brand, J., Pichler, M., & Kulozik, U. (2014). Enabling egg white protein fractionation processes by pre-treatment with high-pressure homogenization. Journal of Food Engineering. doi:10.1016/j.jfoodeng.2014.02.012.

    Google Scholar 

  • Cegielska-Radziejewska, R., Leśnierowski, G., & Kijowski, J. (2008). Properties and application of egg white lysozyme and its modified preparations—a review. Polish Journal of Food and Nutrition Sciences, 58(1), 5–10.

    CAS  Google Scholar 

  • Croguennec, T., Nau, F., Pezennec, S., Piot, M., & Brulé, G. (2001). Two-step chromatographic procedure for the preparation of hen egg white ovotransferrin. European Food Research and Technology, 212(3), 296–301.

    Article  CAS  Google Scholar 

  • Donovan, J. W., Davis, J. G., & White, L. M. (1970). Chemical and physical characterization of ovomucin, a sulfated glycoprotein complex from chicken eggs. Biochimica et Biophysica Acta (BBA) - Protein Structure, doi:10.1016/0005-2795(70)90151-0.

  • Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology, doi:10.1016/j.tifs.2012.03.005.

  • Fleming, A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society B: Biological Sciences, doi: 10.1098/rspb.1922.0023.

  • Floury, J., Bellettre, J., Legrand, J., & Desrumaux, A. (2004). Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chemical Engineering Science, doi:10.1016/j.ces.2003.11.017.

  • Giansanti, F., Leboffe, L., Pitari, G., Ippoliti, R., & Antonini, G. (2012). Physiological roles of ovotransferrin. Biochimica et Biophysica Acta (BBA) - General Subjects. doi:10.1016/j.bbagen.2011.08.004.

    Google Scholar 

  • Giansanti, F., Rossi, P., Massucci, M. T., Botti, D., Antonini, G., Valenti, P., et al. (2002). Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defense activities of lactoferrin. Biochemistry and Cell Biology, 80, 125–130.

    Article  CAS  Google Scholar 

  • Guérin-Dubiard, C., Pasco, M., Hietanen, A., Quiros del Bosque, A., Nau, F., & Croguennec, T. (2005). Hen egg white fractionation by ion-exchange chromatography. Journal of Chromatography A, 1090(1–2), 58–67.

    Article  Google Scholar 

  • Hayakawa, S., & Sato, Y. (1976). Studies on the dissociation of the soluble ovomucin by sonication. Agricultural and Biological Chemistry, 1976(40), 2397–2404.

    Article  Google Scholar 

  • Hayakawa, S., & Sato, Y. (1977). Physicochemical identity of alpha-ovomucins or beta-ovomucins obtained from the sonicated insoluble and soluble ovomucins. Agricultural and Biological Chemistry, 1977(41), 1185–1191.

    Article  Google Scholar 

  • Hayakawa, S., & Sato, Y. (1978). Subunit structures of sonicated α and β-ovomucin and their molecular weights estimated by sedimentation equilibrium. Agricultural and Biological Chemistry. doi:10.1080/00021369.1978.10863093.

    Google Scholar 

  • Hiidenhovi, J. (2007). Ovomucin. In R. Huopalathi (Ed.), Bioactive egg compounds (pp. 61–68). [New York]: Springer-Verlag Berlin Heidelberg.

  • Itoh, T., Miyazaki, J., Sugawara, H., & Adachi, S. (1987). Studies on the characterization of ovomucin and chalaza of the hen’s egg. Journal of Food Science. doi:10.1111/j.1365-2621.1987.tb05868.x.

    Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids. doi:10.1016/j.foodhyd.2007.09.006.

    Google Scholar 

  • Karbstein, H. (1994). Untersuchungen zum Herstellen und Stabilisieren von Öl-in-Wasser-Emulsionen. Technische Hochschule, Karlsruhe: Dissertation.

    Google Scholar 

  • Karbstein, H., & Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing: Process Intensification. doi:10.1016/0255-2701(94)04005-2.

    Google Scholar 

  • Köhler, K. (2010). Simultanes Emulgieren und Mischen. Karlsruhe: Dissertation. Karlsruher Institut für Technologie.

    Google Scholar 

  • Köhler, K. (Ed.) (2012). Emulgiertechnik: Grundlagen, Verfahren und Anwendungen (3rd ed., ). Hamburg: Behr.

    Google Scholar 

  • Lesnierowski, G., & Kijowski, J. (2007). Lysozyme. In R. Huopalathi (Ed.), Bioactive egg compounds (pp. 33–42). [New York]: Springer-Verlag Berlin Heidelberg.

  • Leśnierowski, G., & Cegielska-Radziejewska, R. (2012). Potential possibilities of production, modification and practical application of lysozyme. Acta Scientiarum Polonorum, Technologia Alimentaria, 11(3), 223–230.

    Google Scholar 

  • Li-Chan, E., & Nakai, S. (1989). Biochemical basis for the properties of egg white. Critical reviews in poultry biology, 1, 21–59.

    Google Scholar 

  • Mason, A. B., Woodworth, R. C., Oliver, R. W., Green, B. N., Lin, L. N., Brandts, J. F., et al. (1996). Association of the two lobes of ovotransferrin is a prerequisite for receptor recognition. Studies with recombinant ovotransferrins. The Biochemical Journal, 319(2), 361–368.

    Article  CAS  Google Scholar 

  • Min, S., Harris, L. J., Han, J. H., & Krochta, J. M. (2005). Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. Journal of Food Protection, 68(11), 2317–2325.

    CAS  Google Scholar 

  • Mine, Y. (1995). Recent advances in the understanding of egg white protein functionality. Trends in Food Science & Technology, 6(7), 225–232.

    Article  CAS  Google Scholar 

  • Omana, D. A., Wang, J., & Wu, J. (2010). Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. Journal of Chromatography B, 878(21), 1771–1776.

    Article  CAS  Google Scholar 

  • Pacek, A. W., Ding, P., & Utomo, A. T. (2007). Effect of energy density, pH and temperature on de-aggregation in nano-particles/water suspensions in high shear mixer. Powder Technology, doi:10.1016/j.powtec.2007.01.006.

  • Perez-Perez, C., Regalado-González, C., Rodríguez-Rodríguez, C. A., Barbosa-Rodríguez, JR, & Villaseñor-Ortega, F. (2006). Incorporation of antimicrobial agents in food packaging films and coatings. Advances in Agricultural and Food Biotechnology, 193–216.

  • Phillips, D. C. (1967). The hen egg-white lysozyme molecule. Proceedings of the National Academy of Sciences of the United States of America, 57(3), 483–495.

    Article  Google Scholar 

  • Rabouille, C., Aon, M. A., Muller, G., Cartaud, J., & Thomas, D. (1990). The supramolecular organization of ovomucin. Biophysical and Morphological studies, 266, 697–706.

    CAS  Google Scholar 

  • Robinson, D. S., & Monsey, J. B. (1971). Studies on the composition of egg-white ovomucin. Biochemistry Journal, 121, 537–547.

    Article  CAS  Google Scholar 

  • Sato, Y., & Hayakawa, S. (1977). Further inspection for the structure of thick egg white. Journal of the Agricultural Chemical Society of Japan, 51.

  • Schlender, M., Minke, K., Spiegel, B., & Schuchmann, H. P. (2015). High-pressure double stage homogenization processes: influences of plant setup on oil droplet size. Chemical Engineering Science. doi:10.1016/j.ces.2015.03.055.

    Google Scholar 

  • Schuchmann, H. P. (2005). Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Schultz, S., Wagner, G., Urban, K., & Ulrich, J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology, doi:10.1002/ceat.200406111.

  • Stadelman, W. J., & Cotterill, O. J. (Eds.) (1986). Egg science and technology (3rd ed., ). Westport, Conn: Avi Pub. Co..

    Google Scholar 

  • Stang, M., Schuchmann, H., & Schubert, H. (2001). Emulsification in high-pressure homogenizers. Engineering in Life Sciences, doi:10.1002/1618-2863(200110)1:4<151:AID-ELSC151>3.0.CO;2-D.

  • Superti, F., Ammendolia, M. G., Berlutti, F., & Valenti, P. (2007). Ovotransferrin. In R. Huopalathi (Ed.), Bioactive egg compounds (pp. 43–50). [New York]: Springer-Verlag Berlin Heidelberg.

  • Ternes, W. (2008). Naturwissenschaftliche Grundlagen der Lebensmittelzubereitung (3rd ed., ). Hamburg: Behr.

    Google Scholar 

  • Ternes, W., Acker, L., & Scholtyssek, S. (1994). Ei und Eiprodukte. Berlin: P. Parey.

    Google Scholar 

  • Toussant, M. J., & Latshaw, J. D. (1999). Ovomucin content and composition in chicken eggs with different interior quality. Journal of the Science of Food and Agriculture. doi:10.1002/(SICI)1097-0010(199909)79:12<1666:AID-JSFA416>3.0.CO;2-H.

    Google Scholar 

  • Urban, K., Wagner, G., Schaffner, D., Röglin, D., & Ulrich, J. (2006). Rotor-stator and disc systems for emulsification processes. Chemical Engineering & Technology. doi:10.1002/ceat.200500304.

    Google Scholar 

  • Valenti, P., Antonini, G., Von Hunolstein, C., Visca, P., Orsi, N., & Antonini, E. (1983). Studies of the antimicrobial activity of ovotransferrin. International Journal of Tissue Reactions, 5, 97–105.

    CAS  Google Scholar 

  • Valenti, P., Visca, P., Antonini, G., & Orsi, N. (1985). Antifungal activity of ovotransferrin towards genus Candida. Mycopathologia. doi:10.1007/BF00447027.

    Google Scholar 

  • Wang, J., & Wu, J. (2014). An improved method to extract and purify cystatin from hen egg white. Journal of Chromatography B, doi:10.1016/j.jchromb.2014.05.049.

  • Wu, J., & Acero-Lopez, A. (2012). Ovotransferrin: structure, bioactivities, and preparation. Food Research International, doi:10.1016/j.foodres.2011.07.012.

Download references

Acknowledgments

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn) Project AiF 17479 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Brand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brand, J., Silberbauer, A. & Kulozik, U. Comparison of Different Mechanical Methods for the Modification of the Egg White Protein Ovomucin, Part A: Physical Effects. Food Bioprocess Technol 9, 501–510 (2016). https://doi.org/10.1007/s11947-015-1647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1647-0

Keywords

Navigation