Skip to main content

Advertisement

Log in

Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The importance of food fibers has led to the development of a large and potential market for fiber-enriched foods, and nowadays, there is an ongoing interest to find new sources of dietary fiber (DF), such as agroindustrial coproducts which have traditionally been undervalued. The aim of the article was to evaluate the suitability of five sources of DF to develop fiber-enriched foods. Proximate analysis and physicochemical, technological, and physiological properties (including cholesterol absorption capacity) of these DF sources were determined and compared. Not only proximate composition but also physicochemical and techno-functional properties of DF samples depend on the composition of the raw material (pomegranate, citrus, tiger nuts…), the industrial source, and the coproducts processing into DF extracts. Total dietary fiber content and the ratio insoluble/soluble dietary fiber determine the values obtained for these properties. However, cholesterol adsorption capacity seems to be influenced for other components linked to dietary fiber. Extracts rich in DF obtained from agroindustrial coproducts can be used as functional ingredients. The characterization of these extracts is very important to decide in which type of foods these fibers could be added without causing adverse changes in the food matrix. Pomegranate dietary fiber shows promising results principally about their cholesterol adsorption capacity which must be investigated in in vitro digestion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alesón-Carbonell, L., Fernández-López, J., Sayas-Barberá, M. E., Sendra, E., & Pérez-Alvarez, J. A. (2003). Utilization of lemon albedo in dry-cured sausages. Journal of Food Science, 68, 1826–1830.

    Article  Google Scholar 

  • Alesón-Carbonell, L., Fernández-López, J., Pérez-Alvarez, J. A., & Kuri, V. (2005). Characteristics of beef burger as influenced by various types of lemon albedo. Innovative Food Science and Emerging Technology, 6, 247–255.

    Article  Google Scholar 

  • AOAC (1997). Official methods of analysis of AOAC International (16th ed., ). Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Bailina, C.M. (2014). Caracterización y comportamiento de extractos procedentes de co-productos de la industria alimentaria en un sistema modelo de digestión “in vitro”. MSc thesis. Orihuela (Alicante): Escuela Politécnica Superior de Orihuela. Universidad Miguel Hernández.

  • Carvalho, A. F. U., Portela, M. C. C., Sousa, M. B., Martins, F. S., Rocha, F. C., Farias, D. F., & Feitosa, J. P. A. (2009). Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile. Brazilian Journal of Biology, 69, 969–977.

    CAS  Google Scholar 

  • Chau, C. F., & Huang, Y. L. (2003). Comparison of the chemical composition and physicochemical properties of different fibres prepared from peel of Citrus sinensis L. cv. Liucheng. Journal of Agricultural and Food Chemistry, 51, 2615–2618.

    Article  CAS  Google Scholar 

  • Eastwood, M. A., Kirkpatrick, J. R., Mitchell, W. D., Bone, A., & Hamilton, T. (1973). Effects of dietary supplements of wheat bran and cellulose on faeces and bowel function. British Medical Journal, 4, 392–394.

    Article  CAS  Google Scholar 

  • Fadavi, A., Barzegar, M., & Azizi, H. M. (2006). Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. Journal of Food Composition and Analysis, 19, 676–680.

    Article  CAS  Google Scholar 

  • Fernández-Ginés, J. M., Fernández-López, J., Sayas, E., Sendra, E., & Pérez-Alvarez, J. A. (2003). Effects of storage conditions on quality characteristics of bologna sausages made with citrus fiber. Journal of Food Science, 68, 710–715.

    Article  Google Scholar 

  • Fernández-López, J., Fernández-Ginés, J. M., Alesón-Carbonell, L., Sendra, E., Sayas-Barberá, E., & Pérez-Alvarez, J. A. (2004). Application of functional citrus byproducts to meat products. Trends in Food Science and Technology, 15, 176–185.

    Article  Google Scholar 

  • Fernández-López, J., Sayas-Barberá, M. E., Navarro, C., Sendra, E., & Pérez-Álvarez, J. A. (2005). Antioxidant and antibacterial activities of natural extracts: application on cooked meat balls. Meat Science, 69, 371–380.

    Article  Google Scholar 

  • Fernández-López, J., Sendra, E., Navarro, C., Sayas, E., Viuda-Martos, M., & Pérez-Alvarez, J. A. (2009). Storage stability of a high dietary fiber powder from orange by-products. International Journal of Food Science & Technology, 44, 748–756.

    Article  Google Scholar 

  • Fleury, N., & Lahaye, M. (1991). Chemical and physic-chemical characterization of fibers from Laminaria digitata (Kombu Breton): a physiological approach. Journal of the Science of Food and Agricultural, 35, 635–639.

    Google Scholar 

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26, 68–87.

    Article  CAS  Google Scholar 

  • Gómez-Ordoñez, E., Jiménez-Escrig, A., & Ruperez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43, 2289–2294.

    Article  Google Scholar 

  • Guillon, F., & Champ, M. (2000). Structural an physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 32, 233–245.

    Article  Google Scholar 

  • Hemati-Matin, H.-R., Shariatmadari, F., & Karimi-Torshizi, M. A. (2013). Various physic-chemical properties of dietary fiber sources of poultry diets. International Journal of Agriculture and Crop Sciences, 6, 1239–1245.

    Google Scholar 

  • IFIC (2012). Food and health survey. International Food Information Council.

  • Jiménez-Moreno, E., González-Alvarado, J. M., Lazaro, R., & Mateos, G. G. (2009). Effect of type of cereal, heat processing of the cereal and fiber inclusion in the diet of gizzard pH and nutrient utilization in broilers at different ages. Poultry Science, 88, 1925–1933.

    Article  Google Scholar 

  • Jongaroontaprangsee, S., Trintrong, W., Chokanaporn, W., Methacanon, P., Devahastin, S., & Chiewchan, N. (2007). Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. International Journal of Food Properties, 10, 887–897.

    Article  CAS  Google Scholar 

  • Kendall, C. W., Esfahani, A., & Jenkins, D. J. A. (2009). The link between dietary fibre and human health. Food Hydrocoloi, 24, 42–48.

    Article  Google Scholar 

  • Kinsella, L. E. (1976). Functional properties of protein in foods: a survey. Journal of Food Science Nutrition, 7, 219–280.

    CAS  Google Scholar 

  • Ku, C. S., & Mun, S. P. (2008). Optimization of the extraction of anthocyanin from Bokbunja (Rubus coreanus Miq.) marc produced during traditional wine processing and characterization of the extracts. Bioresource Technology, 99, 8325–8330.

    Article  CAS  Google Scholar 

  • Lario, Y., Sendra, E., García-Pérez, J., Fuentes, C., Sayas-Barberá, E., Fernández-López, J., & Pérez-Alvarez, J. A. (2004). Preparation of high dietary fibre powder from lemon juice by-products. Innovative Food Science and Emerging Technology, 5, 113–117.

    Article  CAS  Google Scholar 

  • Lebesi, D. M., & Tzia, C. (2011). Effect of the addition of different dietary fiber and edible cereal bran sources on the baking sensory characteristics of cupcakes. Food & Bioprocess Technology, 4, 710–722.

    Article  Google Scholar 

  • Luccia, B. H. D., & Kunkel, M. E. (2002). In vitro availability of calcium from sources of cellulose, methylcellulose and psyllium. Food Chemistry, 77, 138–146.

    Article  Google Scholar 

  • Lunn, J., & Buttriss, J. L. (2007). Carbohydrates and dietary fibre. British Nutrition Foundation. Nutrition Bulletin, 32, 21–64.

    Article  Google Scholar 

  • Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100, 736–741.

    Article  Google Scholar 

  • Mazalli, M. R., Sawaya, A. C. H. F., Eberlin, M. N., & Bragagnolo, N. (2006). HPLC method for quantification and characterization of cholesterol and its oxidation products in eggs. Lipids, 41, 615–622.

    Article  CAS  Google Scholar 

  • Monsalve-González, A., Barbosa-Cánovas, G. V., McEvily, A. J., & Iyengar, R. (1994). Inhibition of enzymatic browning in apple products by 4-hexylresorcinol. Food Technology, 4, 110–118.

    Google Scholar 

  • Nelson, A. (2001). Defining high-fiber ingredient terminology. High-Fiber ingredients., 1-83.

  • Ngamukote, S., Mäkynen, K., Thilawech, T., & Adisakwattana, S. (2011). Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules, 16, 5054–5061.

    Article  CAS  Google Scholar 

  • Niba, L. (2012). Progress in fiber-enriched foods. Food Technology, 66, 36–43.

    CAS  Google Scholar 

  • Ozgul-Yucel, S. (2005). Determination of conjugated linolenic acid content of selected oil seeds grown in Turkey. Journal of the American Oil Chemists Society, 82, 893–897.

    Article  CAS  Google Scholar 

  • Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amadó, R., & Thibault, J. F. (2000). Hydratation properties of dietary fibre and resistant starch: a European collaborative study. Lebensmittel-Wissenschaft und-Technologie, 33, 72–79.

    Article  CAS  Google Scholar 

  • Rodríguez, R., Jiménez, A., Fernández-Bolaños, J., Guillén, R., & Heredia, A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science & Technology, 17, 3–15.

    Article  Google Scholar 

  • Sánchez-Zapata, E., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Alvarez, J. A. (2009). Preparation of dietary fibre powder from tiger nut (Cyperus esculentus) milk (“horchata”) byproducts and its physicochemical properties. Journal of Agricultural and Food Chemistry, 57, 7719–7725.

    Article  Google Scholar 

  • Sánchez-Zapata, E., Díaz-Vela, J., Pérez-Chabela, M. L., Pérez-Alvarez, J. A., & Fernández-López, J. (2013). Evaluation of the effect of tiger nut fibre as a carrier of unsaturated fatty acids rich oil on the quality of dry-cured sausages. Food & Bioprocess Technology, 6, 1181–1190.

    Article  Google Scholar 

  • Sendra, E., Fayos, P., Lario, Y., Fernández-López, J., Sayas-Barberá, E., & Pérez-Alvarez, J. A. (2008). Incorporation of citrus fibres in fermented milk containing probiotic bacteria. Food Microbiology, 25, 13–21.

    Article  CAS  Google Scholar 

  • Sengul, H., Surek, E., & Nilufer-Erdil, D. (2014). Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International, 62, 1069–1079.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Wang, W., Waterhouse, G. I. N., & Wadhwa, S. S. (2013). Utilisation potential of feijoa fruit wastes as ingredients for functional foods. Food & Bioprocess Technology, 6, 3441–3455.

    Article  CAS  Google Scholar 

  • Thebaudin, J. Y., Lefebvre, A. C., Harrington, M., & Bourgeois, C. M. (1997). Dietary fibers: nutritional and technological interest. Trends in Food Science & Technology, 8, 41–48.

    Article  CAS  Google Scholar 

  • Viuda-Martos, M., Sánchez-Zapata, E., Martín-Sánchez, A., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Alvarez, J. A. (2012). Dietary fiber and Health. In S. S. Cho, & N. Almeida (Eds.), Technological properties of pomegranate (Punica granatum L.) peel extract obtained as coproduct in the juice processing, Chap. 31 (pp. 433–442). Boca Raton: CRC Press.

    Google Scholar 

  • Wang, J. C., & Kinsella, J. E. (1976). Functional properties of novel protein: alfalfa leaf protein. Journal of Food Science, 41, 286–290.

    Article  CAS  Google Scholar 

  • Yasutmasu, K., Sawada, K., Moritaka, S., Nfisaki, M., Toda, J., Wada, T., & Ishi, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biology Chemical, 36, 719–737.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant of Miguel Hernández University for Research and Innovation 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana Fernández-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Marcos, M.C., Bailina, C., Viuda-Martos, M. et al. Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food Bioprocess Technol 8, 2400–2408 (2015). https://doi.org/10.1007/s11947-015-1591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1591-z

Keywords

Navigation