Skip to main content
Log in

The Effects of Tocopherol Nanocapsules/Xanthan Gum Coatings on the Preservation of Fresh-Cut Apples: Evaluation of Phenol Metabolism

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of different xanthan gum coatings with nanoparticles (nanocapsules and nanospheres) on the production and oxidation of phenolic compounds generated by enzymatic activity (phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO)) on fresh-cut Red Delicious apples stored for 21 days at 4 °C. The nanoparticles were prepared using the emulsification-diffusion method. The film systems formed had particle sizes (Ps) of 190 to 260 nm, the polydispersity index (Pdi) was < 0.3+, and the zeta potential was (ζ) > |35| mV parameters that suggest good physical stability. While all the nanoparticulate coatings proved to be effective, the best coating was the nanocapsules/xanthan gum combination because it decreased the initial respiration rate by 63 % compared to controls. The effect on PPO and PAL activity was associated with the protection of phenolic compounds, whose concentrations remained unchanged. Also, lower variations in total color differences were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chee-Teck, T. (2003). Beverage emulsions. In S. E. Friberg, K. Larsson, & J. Sjöblom (Eds.), Food emulsions (pp. 485–525). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Choi, Y., Tomás-Barberán, A., & Saltveit, M. E. (2005). Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Postharvest Biology and Technology, 37(1), 47–55.

    Article  CAS  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450.

    Article  CAS  Google Scholar 

  • Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science and Technology, 22(6), 292–303.

    Article  CAS  Google Scholar 

  • Freitas, I. R., Cortez-Vega, W. R., Pizato, S., Prentice-Hernández, C., & Borges, C. D. (2013). Xanthan gum as a carrier of preservative agents and calcium chloride applied on fresh-cut apple. Journal of Food Safety, 33(3), 229–238.

    Article  Google Scholar 

  • Goyeneche, R., Agüero, M. V., Roura, S., & Di Scala, K. (2014). Application of citric acid and mild heat shock to minimally processed sliced radish: color evaluation. Postharvest Biology and Technology, 93, 106–113.

    Article  CAS  Google Scholar 

  • Hye-Yeon, S., Wan-Shin, J., Nak-Bum, S., Sea, C. M., & Kyung, B. S. (2013). Quality change of apple slices coated with Aloe vera gel during storage. Journal of Food Science, 78(6), C817–C822.

    Article  Google Scholar 

  • Hyson, D. A. (2011). A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition: An International Review Journal, 2(5), 408–420.

    Article  CAS  Google Scholar 

  • Iqbal, T., Rodrigues, F. A., Mahajan, P. V., Kerry, J. P., Gil, L., Manso, M., et al. (2008). Effect of minimal processing conditions on respiration rate of carrots. Journal of Food Science, 73(8), E396–E402.

    Article  CAS  Google Scholar 

  • Ke, D., & Saltveit, M. E. (1986). Effects of calcium and auxin on russet and phenylalanine ammonia-lyase activity in iceberg lettuce. HortScience, 21, 1169–1171.

    CAS  Google Scholar 

  • Lee, J. Y., Park, H. J., Lee, C. Y., & Choi, W. Y. (2003). Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT--Food Science and Technology, 36(3), 323–329.

    Article  CAS  Google Scholar 

  • Lemarchand, C., Couvreur, P., Vauthier, C., Constantini, D., & Gref, R. (2003). Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. International Journal of Pharmaceutics, 254(1), 77–82.

    Article  CAS  Google Scholar 

  • Limbo, S., & Piergiovanni, L. (2006). Shelf life of minimally processed potatoes: part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest Biology and Technology, 39(3), 254–264.

    Article  Google Scholar 

  • Lin, D., & Zaho, Y. (2007). Innovations in the development and application of edible coating for fresh minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–75.

    Article  CAS  Google Scholar 

  • McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.

    Article  CAS  Google Scholar 

  • Mei, Y., Zhao, Y., Yang, J., & Furr, H. C. (2002). Using edible coatings to enhance nutritional and sensory qualities of baby carrots. Journal of Food Science, 67(5), 1964–1968.

    Article  CAS  Google Scholar 

  • Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1), 113–142.

    Article  CAS  Google Scholar 

  • Myllymäki, O., Myllärinen, P., Forssell, P., Suortti, T., Lähteenkorva, K., Ahvenainen, R., et al. (1998). Mechanical and permeability properties of biodegradable extruded starch/polycaprolactone films. Packaging Technology and Science, 11(6), 265–274.

    Article  Google Scholar 

  • Ortega-García, F., & Peragon, J. (2009). The response of phenylalanine ammonia-lyase, polyphenoloxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). Journal of the Science of Food and Agriculture, 89(9), 1565–1573.

    Article  Google Scholar 

  • Qi, H., Hu, W., Jiang, A., Tian, M., & Li, Y. (2011). Extending shelf life of fresh-cut ‘Fuji’ apples with chitosan-coatings. Innovative Food Science and Emerging Technologies, 12(1), 62–66.

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero, D., Allémann, E., Fessi, H., & Doelker, E. (1998). Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Development and Industrial Pharmacy, 24(12), 1113–1128.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Sobrino-López, A., Tapia, M. S., & Martín-Belloso, O. (2006). Browning inhibition in fresh-cut ‘Fuji’ apple slices by natural antibrowning agents. Journal of Food Science, 71(1), S59–S65.

    Article  Google Scholar 

  • Soliva-Fortuny, R. C., Grigelmo-Miguel, N., Odriozola-Serrano, I., Gorinstein, S., & Martín-Belloso, O. (2001). Browning evaluation of ready-to-eat apples as affected by modified atmosphere packaging. Journal of Agricultural and Food Chemistry, 49(8), 3685–3690.

    Article  CAS  Google Scholar 

  • Soliva-Fortuny, R. C., Lluch, M. A., Quiles, A., Grigelmo-Miguel, N., & Martín-Belloso, O. (2003). Evaluation of textural properties and microstructure during storage of minimally processed apples. Journal of Food Science, 68(1), 312–317.

    Article  CAS  Google Scholar 

  • Soysal, Ç. (2008). Kinetics and thermal activation/inactivation of Starking apple polyphenol oxidase. Journal of Food Processing and Preservation, 32(6), 1034–1046.

    Article  CAS  Google Scholar 

  • Supapvanich, S., Pimsaga, J., & Srisujan, P. (2011). Physicochemical changes in fresh-cut wax apple (Syzygium samarangenese [Blume] Merrill & L.M. Perry) during storage. Food Chemistry, 127(3), 912–917.

    Article  CAS  Google Scholar 

  • Treutter, D. (2001). Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regulation, 34(1), 71–89.

    Article  CAS  Google Scholar 

  • Tsao, R., Yang, R., Young, C., & Zhu, H. (2003). Polyphenolic profiles in eight apple cultivar using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51(21), 6347–6353.

    Article  CAS  Google Scholar 

  • Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., Alves, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19(2), 341–349.

    Article  CAS  Google Scholar 

  • Vert, M., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., et al. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377–410.

    Article  CAS  Google Scholar 

  • Wang, Z., Duan, H., & Hu, C. (2009). Modelling respiration rate of guava (Psidium guajava L.) fruit using enzyme kinetics, chemical kinetics and artificial neutral network. European Food Research and Technology, 229(3), 495–503.

    Article  CAS  Google Scholar 

  • Waterhouse, A. L. (2005). Determination of total phenolics. In R. E. Wrolstad, T. E. Acree, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, D. Smith, & P. Sporns (Eds.), Handbook of food analytical chemistry: pigments, colorants, flavors, texture, and bioactive food components (pp. 463–470). New York: Wiley.

    Google Scholar 

  • Weiss, J., Takhistov, P., & McClements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), R107–R116.

    Article  CAS  Google Scholar 

  • Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidants activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530.

    Article  Google Scholar 

  • Zambrano-Zaragoza, M. L., Mercado-Silva, E., Gutiérrez-Cortez, E., Castaño-Tostado, E., & Quintanar-Guerrero, D. (2011). Optimization of nanocapsules preparation by the emulsion-diffusion method for food applications. LWT--Food Science and Technology, 44(6), 1362–1368.

    Article  CAS  Google Scholar 

  • Zambrano-Zaragoza, M. L., Mercado-Silva, E., Ramirez-Zamorano, P., Cornejo-Villegas, M. A., Gutiérrez-Cortez, E., & Quintanar-Guerrero, D. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 51(2), 946–953.

    Article  CAS  Google Scholar 

  • Zambrano-Zaragoza, M. L., Mercado-Silva, E., Del Real, L. A., Gutiérrez-Cortez, E., Cornejo-Villegas, M. A., & Quintanar-Guerrero, D. (2014a). The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innovative Food Science and Emerging Technologies, 22, 188–196.

    Article  CAS  Google Scholar 

  • Zambrano-Zaragoza, M. L., Gutiérrez-Cortez, E., Del Real, A., González-Reza, R. M., Galindo-Pérez, M. J., & Quintanar-Guerrero, D. (2014b). Fresh-cut Red Delicious apples coating using tocopherol/mucilage nanoemulsion: effect of coating on polyphenol oxidase and pectin methylesterase activities. Food Research International, 62, 974–983.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Galindo-Pérez thanks to Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial grant received (support number:392051). The authors acknowledge the financial support for this work provided by PAPIIT IT231511 and PAPIIT IT200814 from DGAPA-UNAM and the technical support for acquisition of micrographics to M en I. Alicia del Real López.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Zambrano-Zaragoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo-Pérez, M.J., Quintanar-Guerrero, D., Mercado-Silva, E. et al. The Effects of Tocopherol Nanocapsules/Xanthan Gum Coatings on the Preservation of Fresh-Cut Apples: Evaluation of Phenol Metabolism. Food Bioprocess Technol 8, 1791–1799 (2015). https://doi.org/10.1007/s11947-015-1523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1523-y

Keywords

Navigation