Skip to main content
Log in

Nondestructive Detection of Soluble Solids Content of Apples from Dielectric Spectra with ANN and Chemometric Methods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To investigate the feasibility of using dielectric spectra in nondestructively determining the soluble solids content (SSC) of fruits, the dielectric constants and loss factors of 160 apples of three varieties (Fuji, Red Rome, and Pink Lady) were obtained at 51 discrete frequencies from 10 to 1800 MHz with an open-ended coaxial-line probe and an impedance/material analyzer. Based on the joint x–y distances sample set partitioning (SPXY) method, 106 apples were selected for the calibration set and the other 54 samples were used for the prediction set. The principal component analysis (PCA), uninformative variables elimination method (UVE-PLS), based on partial least squares, and successive projection algorithm (SPA) were applied to extract characteristic variables from original full dielectric spectra. The generalized regression neural network (GRNN), support vector machine (SVM) and extreme learning machine (ELM) modeling methods were used to establish models to predict SSC of apples, based on the original full dielectric spectra and characteristic variables, respectively. Results showed that four principal components were selected as characteristic variables by PCA, 15 dielectric constants and 14 loss factors at different frequencies were selected as characteristic variables by UVE-PLS, and one dielectric constant and ten loss factors were chosen as feature variables by SPA. ELM combined with SPA had the best SSC prediction performance, with calibrated correlation coefficient and predicted correlation coefficient of 0.898 and 0.908, respectively, and calibrated root-mean-square error and predicted root-mean-square error of 0.840 and 0.822, respectively. The study indicates that dielectric spectra combined with artificial neural network and chemometric methods might be applied in nondestructive determination of SSC of apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beghi, R., Spinardi, A., Bodria, L., Mignani, I., & Guidetti, R. (2013). Apples nutraceutic properties evaluation through a visible and near-infrared portable system. Food and Bioprocess Technology, 6(9), 2547–2554.

    Article  CAS  Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

    Article  Google Scholar 

  • Cao, J. W., Lin, Z. P., & Huang, G. B. (2012). Self-adaptive evolutionary extreme learning machine. Neural Processing Letters, 36(3), 285–305.

    Article  Google Scholar 

  • Centner, V., Massart, D. L., deNoord, O. E., deJong, S., Vandeginste, B. M., & Sterna, C. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 68(21), 3851–3858.

    Article  CAS  Google Scholar 

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.

    Article  Google Scholar 

  • Chen, Q. S., Ding, J., Cai, J. R., & Zhao, J. W. (2012). Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools. Food Chemistry, 135(2), 590–595.

    Article  CAS  Google Scholar 

  • Cheng, P. Y., Fan, W. L., & Xu, Y. (2013). Quality grade discrimination of Chinese strong aroma type liquors using mass spectrometry and multivariate analysis. Food Research International, 54(2), 1753–1760.

    Article  CAS  Google Scholar 

  • Cherkassky, V., & Ma, Y. Q. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113–126.

    Article  Google Scholar 

  • Collobert, R., & Bengio, S. (2001). SVMTorch: support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1(2), 143–160.

    Google Scholar 

  • Deng, S. G., Xu, Y. F., Li, L., Li, X. L., & He, Y. (2013). A feature-selection algorithm based on support vector machine-multiclass for hyperspectral visible spectral analysis. Journal of Food Engineering, 119(1), 159–166.

    Article  CAS  Google Scholar 

  • Fan, G. Q., Zha, J. W., Du, R., & Gao, L. (2009). Determination of soluble solids and firmness of apples by Vis/NIR transmittance. Journal of Food Engineering, 93(4), 416–420.

    Article  Google Scholar 

  • Feng, H., Tang, J., & Cavalieri, R. P. (2002). Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of ASAE, 45(1), 129–135.

    Article  Google Scholar 

  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914.

    Article  CAS  Google Scholar 

  • Galvao, R. K. H., Araujo, M. C. U., Jose, G. E., Pontes, M. J. C., Silva, E. C., & Saldanha, T. C. B. (2005). A method for calibration and validation subset partitioning. Talanta, 67(4), 736–740.

    Article  CAS  Google Scholar 

  • Ghiasabadi, A., Noorossana, R., & Saghaei, A. (2013). Identifying change point of a non-random pattern on (X) over-bar control chart using artificial neural networks. International Journal of Advanced Manufacturing Technology, 67(5–8), 1623–1630.

    Article  Google Scholar 

  • Giovanelli, G., Sinelli, N., Beghi, R., Guidetti, R., & Casiraghi, E. (2014). NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology, 87(18), 13–20.

    Article  CAS  Google Scholar 

  • Guo, W., & Chen, K. (2010). Relationship between dielectric properties from 10 to 4500 MHz and internal quality of peaches. Transactions of the Chinese Society for Agricultural Machinery, 41(3), 134–138 (in Chinese with English abstract).

    Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007a). Dielectric properties of honeydew melons and correlation with quality. Journal of Microwave Power and Electromagnetic Energy, 41(2), 44–54.

    Google Scholar 

  • Guo, W. C., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007b). 10–1800 MHz dielectric properties of fresh apples during storage. Journal of Food Engineering, 83(4), 562–569.

    Article  CAS  Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2008). Radio Frequency (RF) dielectric properties of honeydew melon and watermelon juice and correlations with sugar content. Transactions of the Chinese Society of Agricultural Engineering, 24(5), 289–292 (in Chinese with English abstract).

    Google Scholar 

  • Guo, W., Zhu, X., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT—Food Science and Technology, 44(1), 224–230.

    CAS  Google Scholar 

  • Huang, M., & Lu, R. (2010). Optimal wavelength selection for hyperspectral scattering prediction of apple firmness and soluble solids content. Transactions of the ASABE, 53(4), 1175–1182.

    Article  Google Scholar 

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  • Huang, W. Q., Li, J. B., Chen, L. P., & Guo, Z. M. (2013a). Effectively predicting soluble solids content in apple based on hyperspectral imaging. Spectroscopy and Spectral Analysis, 33(10), 2843–2846 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Huang, Y. M., Liu, L. J., Shi, D. P., Wu, S. S., Zheng, S. Y., Fang, L., et al. (2013b). Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceramics International, 39(6), 6063–6068.

    Article  CAS  Google Scholar 

  • Huang, Z. R., Sha, S., Rong, Z. Q., Chen, J. H., He, Q. L., Khan, D. M., et al. (2013c). Feasibility study of near infrared spectroscopy with variable selection for non-destructive determination of quality parameters in shell-intact cottonseed. Industrial Crops and Products, 43, 654–660.

    Article  CAS  Google Scholar 

  • Jiang, H., & Zhu, W. X. (2013). Determination of pear internal quality attributes by Fourier transform near infrared (FT-NIR) spectroscopy and multivariate analysis. Food Analytical Methods, 6(2), 569–577.

    Article  Google Scholar 

  • Jie, D. F., Xie, L. J., Fu, X. P., Rao, X. Q., & Ying, Y. B. (2013). Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. Journal of Food Engineering, 118(4), 387–392.

    Article  Google Scholar 

  • Li, J. B., Huang, W. Q., Zhao, C. J., & Zhang, B. H. (2013). A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. Journal of Food Engineering, 116(2), 324–332.

    Article  CAS  Google Scholar 

  • Liu, H. C., & Li, S. T. (2013). Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing, 113, 97–104.

    Article  Google Scholar 

  • Liu, N., & Wang, H. (2013). Evolutionary extreme learning machine and its application to image analysis. Journal of Signal Processing Systems for Signal Image and Video Technology, 73(1), 73–81.

    Article  Google Scholar 

  • Liu, Y. D., Sun, X. D., & Ouyang, A. G. (2010). Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN. LWT—Food Science and Technology, 43(4), 602–607.

    CAS  Google Scholar 

  • Liu, Y. D., Gao, R. J., Hao, Y., Sun, X. D., & Ouyang, A. G. (2012). Improvement of near-infrared spectral calibration models for brix prediction in ‘Gannan’ navel oranges by a portable near-infrared device. Food and Bioprocess Technology, 5(3), 1106–1112.

    Article  Google Scholar 

  • Luczycka, D., Czubaszek, A., Fujarczuk, M., & Pruski, K. (2013). Dielectric properties of wheat flour mixed with oat meal. International Agrophysics, 27(2), 175–180.

    Article  Google Scholar 

  • Masood, I., & Hassan, A. (2013). Pattern recognition for bivariate process mean shifts using feature-based artificial neural network. International Journal of Advanced Manufacturing Technology, 66(9–12), 1201–1218.

    Article  Google Scholar 

  • Mendoza, F., Lu, R. F., Ariana, D., Cen, H. Y., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.

    Google Scholar 

  • Moller, S. M., Travers, S., Bertram, H. C., & Bertelsen, M. G. (2013). Prediction of postharvest dry matter, soluble solids content, firmness and acidity in apples (cv. Elshof) using NMR and NIR spectroscopy: a comparative study. European Food Research and Technology, 237(6), 1021–1024.

    Article  Google Scholar 

  • Nashat, S., & Abdullah, M. Z. (2010). Multi-class colour inspection of baked foods featuring support vector machine and Wilk’s λ analysis. Journal of Food Engineering, 101(4), 370–380.

    Article  Google Scholar 

  • Nelson, S. O., Soderholm, L. H., & Yung, F. D. (1953). Determining the dielectric properties of grain. Agricultural Engineering, 34(9), 608–610.

    Google Scholar 

  • Nelson, S. O., Trabelsi, S., & Kays, S. J. (2006). Dielectric spectroscopy of honeydew melons from 10 MHz to 1.8 GHz for quality sensing. Transactions of the ASABE, 49(6), 1977–1981.

    Article  Google Scholar 

  • Nelson, S. O., Guo, W., Trabelsi, S., & Kays, S. J. (2007). Dielectric properties of watermelons for quality sensing. Measurement Science & Technology, 18, 1887–1892.

    Article  CAS  Google Scholar 

  • Peng, Y. K., & Lu, R. F. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 48(1), 52–62.

    Article  Google Scholar 

  • Pontes, M. J. C., Galvao, R. K. H., Araujo, M. C. U., Nogueira, P., Moreira, T., Neto, O. D. P., et al. (2005). The successive projections algorithm for spectral variable selection in classification problems. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 11–18.

    Article  CAS  Google Scholar 

  • Qian, Y. R., Wang, J., Jeon, G. G., & Jeong, J. C. (2013). Image deinterlacing using region-based back propagation artificial neural network. Optical Engineering, 52(7), 073107–073107.

    Article  Google Scholar 

  • Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568–576.

    Article  CAS  Google Scholar 

  • Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.

    Article  CAS  Google Scholar 

  • Wu, D., Nie, P. C., He, Y., Wang, Z. P., & Wu, H. X. (2013). Spectral multivariable selection and calibration in visible-shortwave near-infrared spectroscopy for non-destructive protein assessment of spirulina microalga powder. International Journal of Food Properties, 16(5), 1002–1015.

    Article  CAS  Google Scholar 

  • Ye, S. F., Wang, D., & Min, S. G. (2008). Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometrics and Intelligent Laboratory Systems, 91(2), 194–199.

    Article  CAS  Google Scholar 

  • Zhan, X. R., Zhu, X. R., Shi, X. Y., Zhang, Z. Y., & Qiao, Y. J. (2009). Determination of hesperidin in tangerine leaf by near-infrared spectroscopy with SPXY algorithm for sample subset partitioning and Monte Carlo cross validation. Spectroscopy and Spectral Analysis, 29(4), 964–968 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhang, J., Rivard, B., & Rogge, D. M. (2008). The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data. Sensors, 8(2), 1321–1342.

    Article  Google Scholar 

  • Zhang, S. J., Zhang, H. H., Zhao, Y. R., Guo, W., & Zhao, H. M. (2013a). A simple identification model for subtle bruises on the fresh jujube based on NIR spectroscopy. Mathematical and Computer Modelling, 58(3–4), 545–550.

    Article  Google Scholar 

  • Zhang, Z. Y., Wang, Y., & Wang, K. S. (2013b). Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks. International Journal of Advanced Manufacturing Technology, 68(1–4), 763–773.

    Article  Google Scholar 

  • Zhu, Q. Y., Qin, A. K., Suganthan, P. N., & Huang, G. B. (2005). Evolutionary extreme learning machine. Pattern Recognition, 38(10), 1759–1763.

    Article  Google Scholar 

  • Zhu, F. T., Deng, Z. M., & Zhang, J. F. (2013). An integrated approach for structural damage identification using wavelet neuro-fuzzy model. Expert Systems with Applications, 40(18), 7415–7427.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by a grant from the National Natural Science Foundation of China (project no. 31171720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchuan Guo.

Additional information

Data obtained by Wenchuan Guo as a visiting scholar at the Russell Research Center, USDA, ARS, Athens, Georgia, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Shang, L., Zhu, X. et al. Nondestructive Detection of Soluble Solids Content of Apples from Dielectric Spectra with ANN and Chemometric Methods. Food Bioprocess Technol 8, 1126–1138 (2015). https://doi.org/10.1007/s11947-015-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1477-0

Keywords

Navigation