Skip to main content

Advertisement

Log in

Dielectric Properties of Pistachio Kernels as Influenced by Frequency, Temperature, Moisture and Salt Content

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Conventional hot air drying for pistachio nuts results in high energy consumption and low product quality. To develop advanced drying methods based on microwave (MW) and radio frequency (RF) energy, dielectric properties of pistachio kernel samples at different frequencies (10–4500 MHz), temperatures (25–85 °C), moisture contents (3–27 % w.b.), and three salty levels (moisture content 15 % w.b.) were measured by an open-ended coaxial-line probe and network analyzer. The results showed that the permittivities of non-salted pistachio kernel samples were dependent on moisture content, temperature of samples, and frequency of the applied electric field. Both dielectric constant and loss factor increased with increasing temperature and moisture content. The rate of increase was greater at higher temperature and moisture levels than at lower levels, especially in low frequencies. Dielectric loss factor increased with increasing salty levels of pistachio kernel samples, but dielectric constants were not significantly affected. Quadratic polynomial equations were developed to relate dielectric properties of the non-salted samples to temperature and moisture at four specific frequencies with R2 > 0.978. Penetration depth decreased with increasing frequency, moisture content, temperature, and salty levels. It is likely that low frequencies, such as RF, may provide potential large-scale industrial drying applications for pistachio nuts with acceptable uniformity and throughputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktas, T., & Polat, R. (2007). Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. Journal of Food Process Engineering, 30(5), 607–624.

    Article  Google Scholar 

  • Albanese, D., Cinquanta, L., Cuccurullo, G., & Di Matteo, M. (2013). Effects of microwave and hot-air drying methods on colour, β-carotene and radical scavenging activity of apricots. International Journal of Food Science and Technology, 48(6), 1327–1333.

    Article  CAS  Google Scholar 

  • AOAC. (2005). Official Methods of Analysis of AOAC International. Maryland: Gaithersburg.

    Google Scholar 

  • Arcan, I., & Yemenicioğlu, A. (2009). Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. Journal of Food Composition and Analysis, 22(3), 184–188.

    Article  CAS  Google Scholar 

  • Arena, E., Campisi, S., Fallico, B., & Maccarone, E. (2007). Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds. Food Chemistry, 104(1), 403–408.

    Article  CAS  Google Scholar 

  • Balakrishnan, P., Vedaraman, N., Sundar, V. J., Muralidharan, C., & Swaminathan, G. (2004). Radio frequency heating—a prospective leather drying system for future. Drying Technology, 22(8), 1969–1982.

    Article  Google Scholar 

  • Berbert, P., Queiroz, D., & Melo, E. (2002). Dielectric properties of common bean. Biosystems Engineering, 83(4), 449–462.

    Article  Google Scholar 

  • Bengtsson, N., & Risman, P. (1971). Dielectric properties of food at 3 GHz as determined by a cavity perturbation technique. II. Measurements on food materials. Journal of Microwave Power, 6(2), 107–123.

    Google Scholar 

  • Bilim, H. I. C., & Polat, R. (2008). Splitting and breaking of pistachio nuts with striking and heating. Journal of Food Process Engineering, 31(3), 317–329.

    Article  Google Scholar 

  • Bircan, C., & Barringer, S. (1998). Salt-starch interactions as evidenced by viscosity and dielectric property measurements. Journal of Food Science, 63(6), 983–986.

    Article  CAS  Google Scholar 

  • Boldor, D., Sanders, T., & Simunovic, J. (2004). Dielectric properties of in-shell and shelled peanuts at microwave frequencies. Transactions of the ASAE, 47(4), 1159–1170.

    Article  Google Scholar 

  • Calay, R. K., Newborough, M., Probert, D., & Calay, P. S. (1994). Predictive equations for the dielectric properties of foods. International Journal of Food Science and Technology, 29(6), 699–713.

    Article  CAS  Google Scholar 

  • FAOSTAT (2012) Food and Agriculture Organization. Available at http://faostat.fao.org/site/339/default.aspx

  • Farag, K. W., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2008). Dielectric and thermophysical properties of different beef meat blends over a temperature range of −18 to +10 °C. Meat Science, 79(4), 740–747.

    Article  CAS  Google Scholar 

  • Feng, H., Tang, J., & Cavalieri, R. (2002). Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the ASAE., 45(1), 129–136.

    Article  Google Scholar 

  • Ferguson L, A. Kader & Thompson. J (2005) Pistachio production manual: harvesting, transporting, processing and grading. Available at http://fruitsandnuts.ucdavis.edu/files/73698.pdf

  • Gao, M., Tang, J., Johnson, J. A., & Wang, S. (2012). Dielectric properties of ground almond shells in the development of radio frequency and microwave pasteurization. Journal of Food Engineering, 112(4), 282–287.

    Article  Google Scholar 

  • Ghazanfari, A., Tabil, L., Jr., & Sokhansanj, S. (2003). Evaluating a solar dryer for in-shell drying of split pistachio nuts. Drying Technology, 21(7), 1357–1368.

    Article  Google Scholar 

  • Guan, D., Cheng, M., Wang, Y., & Tang, J. (2004). Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science, 69(1), FEP30–FEP37.

    CAS  Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007). 10–1800-MHz dielectric properties of fresh apples during storage. Journal of Food Engineering, 83(4), 562–569.

    Article  CAS  Google Scholar 

  • Guo, W., Tiwari, G., Tang, J., & Wang, S. (2008). Frequency, moisture and temperature-dependent dielectric properties of chickpea flour. Biosystems Engineering, 101(2), 217–224.

    Article  Google Scholar 

  • Guo, W., Wang, S. J., Tiwari, G., Johnson, J. A., & Tang, J. M. (2010). Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT--Food Science and Technology, 43(2), 193–201.

    Article  CAS  Google Scholar 

  • Hewlett-Packard. (2005). Agilent basics of measuring the dielectric properties of materials. Santa Clara, CA: Application Note.

    Google Scholar 

  • Hojjati, M., Calín-Sánchez, Á., Razavi, S. H., & Carbonell-Barrachina, Á. A. (2013). Effect of roasting on colour and volatile composition of pistachios (Pistacia vera L.). International Journal of Food Science and Technology, 48(2), 437–443.

    Article  CAS  Google Scholar 

  • Houben, J., Schoenmakers, L., Van Putten, E., Van Roon, P., & Krol, B. (1991). Radio-frequency pasteurization of sausage emulsions as a continuous process. Journal of Microwave Power and Electromagnetic Energy, 26(4), 202–205.

    Google Scholar 

  • Hu, X., & Mallikarjunan, P. (2005). Thermal and dielectric properties of shucked oysters. LWT-Food Science and Technology, 38(5), 489–494.

    Article  CAS  Google Scholar 

  • Jiao, S., Johnson, J. A., Tang, J., Tiwari, G., & Wang, S. (2011). Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosystems Engineering, 108(3), 280–291.

    Article  Google Scholar 

  • Jumah, R. (2005). Modelling and simulation of continuous and intermittent radio frequency-assisted fluidized bed drying of grains. Food and Bioproducts Processing, 83(3), 203–210.

    Article  Google Scholar 

  • Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2006). Some physical properties of Pistachio (Pistacia vera L.) nut and its kernel. Journal of Food Engineering, 72(1), 30–38.

    Article  Google Scholar 

  • Kornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381–387.

    Article  CAS  Google Scholar 

  • Kouchakzadeh, A. (2013). The effect of acoustic and solar energy on drying process of pistachios. Energy Conversion and Management, 67, 351–356.

    Article  Google Scholar 

  • Kouchakzadeh, A., & Tavakoli, T. (2011). New practical method for evaluation of a conventional flat plate continuous pistachio dryer. Energy Conversion and Management, 52(7), 2735–2740.

    Article  Google Scholar 

  • Liu, Y., Tang, J., & Mao, Z. (2009). Analysis of bread loss factor using modified Debye equations. Journal of Food Engineering, 93(4), 453–459.

    Article  CAS  Google Scholar 

  • Liu, Y., Tang, J., Mao, Z., Mah, J.-H., Jiao, S., & Wang, S. (2011). Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering, 104(4), 492–498.

    Article  Google Scholar 

  • Lyng, J. G., Arimi, J. M., Scully, M., & Marra, F. (2014). The influence of compositional changes in reconstituted potato flakes on thermal and dielectric properties and temperatures following microwave heating. Journal of Food Engineering, 124, 133–142.

    Article  CAS  Google Scholar 

  • Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering, 91(4), 497–508.

    Article  Google Scholar 

  • Metaxas Aa and Meredith RJ (1983) Industrial microwave heating. vol 4. IET

  • Mudgett, R. E. (1985). Dielectric properties of foods. In R. V. Decareau (Ed.), Microwaves in the food processing industry (pp. 16–38). New York: Academic.

    Google Scholar 

  • Mujumdar AS (2006) Handbook of Industrial Drying, Third Edition. Taylor & Francis

  • Nelson, S. O. (1996). Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Transactions of the ASAE., 39, 1475–1484.

    Article  Google Scholar 

  • Nelson, S. O., & Trabelsi, S. (2006). Dielectric spectroscopy of wheat from 10 MHz to 1.8 GHz. Measurement Science and Technology, 17(8), 2294.

    Article  CAS  Google Scholar 

  • Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43, 1936–1943.

    Article  Google Scholar 

  • Razavi, S. M. A., Rafe, A., Mohammadi Moghaddam, T., & Mohammad Amini, A. (2007). Physical properties of pistachio nut and its kernel as a function of moisture content and variety. Part II. Gravimetrical properties. Journal of Food Engineering, 81(1), 218–225.

    Article  Google Scholar 

  • Schiffmann, R. F. (1995). Microwave and dielectric drying. In A. S. Majumdar (Ed.), Handbook of industrial drying. New York: Maecel Dekker.

    Google Scholar 

  • Sheen, N., & Woodhead, I. (1999). An open-ended coaxial probe for broad-band permittivity measurement of agricultural products. Journal of Agricultural Engineering Research, 74(2), 193–202.

    Article  Google Scholar 

  • Singh, S. P., Kumar, P., Manohar, R., & Shukla, J. (2006). Dielectric properties of some oil seeds at different concentration of moisture contents and micro-fertilizer. International Journal of Agricultural Research, 1(3), 293–304.

    Article  Google Scholar 

  • Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010). Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT--Food Science and Technology, 43(8), 1169–1179.

    Article  CAS  Google Scholar 

  • Tarigan, E., Prateepchaikul, G., Yamsaengsung, R., Sirichote, A., & Tekasakul, P. (2007). Drying characteristics of unshelled kernels of candle nuts. Journal of Food Engineering, 79(3), 828–833.

    Article  Google Scholar 

  • Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of Agricultural and Food Chemistry, 54(13), 4705–4714.

    Article  CAS  Google Scholar 

  • von Hippel, A. R. (1954). Dielectric properties and waves. New York: Wiley.

    Google Scholar 

  • Wang, S., Monzon, M., Gazit, Y., Tang, J., Mitcham, E., & Armstrong, J. (2005a). Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests. Transactions of the ASAE., 48(5), 1873.

    Article  Google Scholar 

  • Wang, S., Tang, J., Johnson, J., Mitcham, E., Hansen, J., Hallman, G., Drake, S., & Wang, Y. (2003a). Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering, 85(2), 201–212.

    Article  Google Scholar 

  • Wang, W., Chen, G., & Gao, F. (2005b). Effect of dielectric material on microwave freeze drying of skim milk. Drying Technology, 23(1–2), 317–340.

    Article  CAS  Google Scholar 

  • Wang, Y., Tang, J., Rasco, B., Kong, F., & Wang, S. (2008). Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering, 87(2), 236–246.

    Article  Google Scholar 

  • Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003b). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57(3), 257–268.

    Article  Google Scholar 

  • Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R., & Wang, S. (2014). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7, 278–288.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, L., Gao, M., Tang, J., & Wang, S. (2013). Temperature-and moisture-dependent dielectric properties of macadamia nut kernels. Food and Bioprocess Technology, 6(8), 2165–2176.

    Article  CAS  Google Scholar 

  • Zhao, Y., Flugstad, B. E. N., Kolbe, E., Park, J. W., & Wells, J. H. (2000). Using capacitive (radio frequency) dielectric heating in food processing and preservation—a review. Journal of Food Process Engineering, 23(1), 25–55.

    Article  Google Scholar 

  • Zhu, X., Guo, W., Wu, X., & Wang, S. (2012). Dielectric properties of chestnut flour relevant to drying with radio-frequency and microwave energy. Journal of Food Engineering, 113(1), 143–150.

    Article  CAS  Google Scholar 

  • Zhu, X. H., Guo, W., & Jia, Y. (2014a). Temperature-dependent dielectric properties of Raw Cow’s and Goat’s milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7(6), 1830–1839.

    Article  CAS  Google Scholar 

  • Zhu, X., Guo, W., & Wang, S. (2014b). Dielectric properties of ground hazelnuts at different frequencies, temperatures, and moisture contents. Transactions of the ASABE, 57(1), 161–168.

    Google Scholar 

  • Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T., & Blaszczak, W. (2013). A multi-stage combined heat pump and microwave vacuum drying of green peas. Journal of Food Engineering, 115(3), 347–356.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by research grants from General Program of National Natural Science Foundation in China (No. 31371853) and Ph.D. Programs Foundation of Ministry of Education in China (20120204110022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, B., Guo, W., Hou, L. et al. Dielectric Properties of Pistachio Kernels as Influenced by Frequency, Temperature, Moisture and Salt Content. Food Bioprocess Technol 8, 420–430 (2015). https://doi.org/10.1007/s11947-014-1413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1413-8

Keywords

Navigation