Skip to main content
Log in

Modelling Milk Lactic Acid Fermentation Using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The purpose of the current work was to investigate the capability of multivariate curve resolution-alternating least squares (MCR-ALS) to extract relevant information from Fourier transform near-infrared (FT-NIR) spectra acquired on-line with a fibre probe during milk lactic acid fermentation. The fermentation trials were conducted replicating twice a factorial design with three different starter cultures (Streptococcus thermophilus and Lactobacillus bulgaricus alone or as 1:1 mixed culture) and three different incubation temperatures (37, 41 and 45 °C), for a total of 18 experiments. The runs were monitored for 7.5 h through pH measurement, dynamic oscillatory test for rheological properties evaluation and FT-NIR spectra acquisition. The obtained MCR-ALS models successfully described the experimental FT-NIR spectra recorded (99.9 % of explained variance, 0.63665 % lack of fit, and standard deviation of the residuals lower than 0.0072). The three spectral profiles obtained by MCR-ALS pointed to the characteristic coagulation phases of milk lactic acid fermentation. The concentration profiles defined as a function of time for each run were strongly dependent on starter and temperature tested, in agreement with pH and rheological results. MCR-ALS applied to FT-NIR spectroscopy provides to the dairy industry a control system which could be implemented in-line as reliable management method for monitoring fermentation processes and to define the coagulation profile no matter the operative conditions adopted for the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amigo, J. M., de Juan, A., Coello, J., & Maspoch, S. (2006a). Analytica Chimica Acta, 567(2), 236–244.

    Article  CAS  Google Scholar 

  • Amigo, J. M., de Juan, A., Coello, J., & Maspoch, S. (2006b). Analytica Chimica Acta, 567(2), 245–254.

    Article  CAS  Google Scholar 

  • Andersen, T., Brems, N., Borglum, M. M., Kold-Christensen, S., Hansen, E., Jorsen, J. H., & Nygaard, L. (1993). In R. K. Robinson (Ed.), Modern dairy technology (pp. 381–416). London: Elsevier.

    Chapter  Google Scholar 

  • Beal, C., Skokanova, J., Latrille, E., Martin, N., & Corrieu, G. (1999). Journal of Dairy Science, 82(4), 673–681.

    Article  CAS  Google Scholar 

  • Benedetti, S., Sinelli, N., Buratti, S., & Riva, M. (2005). Journal of Dairy Science, 88(9), 3044–3051.

    Article  CAS  Google Scholar 

  • Bock, J. E., & Connelly, R. K. (2008). Innovative uses of near-infrared in food processing. Journal of Food Science, 73(7), R91–R98.

    Article  CAS  Google Scholar 

  • Chandan, R. C., & O’Rell, K.R. (2006). Yogurt plant: quality assurance. In Manufacturing yogurt and fermented milks. Oxford: Blackwell Publishing.

  • de Juan, A., & Tauler, R. (2006). Critical Review in Analytical Chemistry, 36(3–4), 163–176.

    Article  Google Scholar 

  • de Juan, A., Casassas, E. & Tauler, R. (2000). Soft-modelling of analytical data. In Encyclopedia of analytical chemistry instrumentation and applications. New York: Wiley.

  • Donato, L., Alexander, M., & Dalgleish, D. G. (2007). Journal of Agricultural and Food Chemistry, 55(10), 4160–4168.

    Article  CAS  Google Scholar 

  • Frake, P., Luscombe, C. N., Rudd, D. R., Gill, I., Waterhouse, J., Frake, P., & Jayasooriya, U. A. (1998). Analyst, 123, 2043–2046.

    Article  CAS  Google Scholar 

  • Garrido, M., Rius, F. X., & Larrechi, M. S. (2008). Analytical and Bioanalytical Chemistry, 390(8), 2059–2066.

    Article  CAS  Google Scholar 

  • Gonzàlez-Sàiz, J.-M., Isabel, E. D., Rodríguez-Tecedor, S., & Pizarro, C. (2008). Biotechnology and Bioengineering, 101(4), 776–787.

    Article  Google Scholar 

  • Horne, D. S., & Davidson, C. M. (1993). International Dairy Journal, 3(1), 61–71.

    Article  CAS  Google Scholar 

  • Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Journal of Food Engineering, 87, 303–313.

    Article  CAS  Google Scholar 

  • Jaumot, J., Gargallo, R., de Juan, A., & Tauler, R. (2005). Chemometrics and Intelligent Laboratory Systems, 76(1), 101–110.

    Article  CAS  Google Scholar 

  • Kristo, E., Biliaderis, C. G., & Tzanetakis, N. (2003). Food Chemistry, 83(3), 437–446.

    Article  CAS  Google Scholar 

  • Lee, W. J., & Lucey, J. A. (2004). Journal of Dairy Science, 87(10), 3153–3164.

    Article  CAS  Google Scholar 

  • Navràtil, M., Cimander, C., & Mandenius, C.-F. (2004). Journal of Agricultural and Food Chemistry, 52(3), 415–420.

    Article  Google Scholar 

  • Ngarize, S., Adams, A., & Howell, N. K. (2004). Food Hydrocolloids, 18, 49–59.

    Article  CAS  Google Scholar 

  • Ntsame Affane, A. L., Fox, G. P., Sigge, S. O., Manley, M., & Britz, T. J. (2011). International Dairy Journal, 21(11), 896–900.

    Article  CAS  Google Scholar 

  • Pindstrup, H., Fernández, C., Amigo, J. M., & Skibsted, L. H. (2013). Chemometrics and Intelligent Laboratory Systems, 122, 78–83.

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez, C., Amigo, J. M., Coello, J., & Maspoch, S. (2007). Journal of Chemical Education, 84(7), 1190–1195.

    Article  Google Scholar 

  • Sinelli, N., Limbo, S., Torri, L., Di Egidio, V., & Casiraghi, E. (2010). Meat Science, 86(3), 748–752.

    Article  CAS  Google Scholar 

  • Soukoulis, C., Panagiotidis, P., Koureli, R., & Tzia, C. (2007). Journal of Dairy Science, 90(6), 2641–2654.

    Article  CAS  Google Scholar 

  • Tamime, A. Y., & Robinson, R. K. (2007). Yoghurt. Science and technology (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Tauler, R. (1995). Chemometrics and Intelligent Laboratory Systems, 30, 133–146.

    Article  CAS  Google Scholar 

  • Tauler, R., & Barceló, D. (1993). Trends in Analytical Chemistry, 12(8), 319–327.

    Article  CAS  Google Scholar 

  • Trachoo, N. (2002). Songklanakarin Journal of Science and Technology, 24(4), 727–737.

    Google Scholar 

  • Workman, J., & Weyer, L. (2007). Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, S., Alamprese, C., Bono, V. et al. Modelling Milk Lactic Acid Fermentation Using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Food Bioprocess Technol 7, 1819–1829 (2014). https://doi.org/10.1007/s11947-013-1189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1189-2

Keywords

Navigation