Skip to main content
Log in

Continuous and Pulsed Ultraviolet Light for Nonthermal Treatment of Liquid Foods. Part 1: Effects on Quality of Fructose Solution, Apple Juice, and Milk

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Performance of three innovative high-intensity pulsed (HIP) ultraviolet (UV) sources characterized by different emission spectra, energy per pulse, and frequency (HIP-1: 31 J/pulse, 8 Hz; HIP-2: 344 J/pulse, 0.75 Hz; HIP-3: 644 J/pulse, 0.5 Hz) was evaluated at UV fluence of 5 mJ/cm2 by measuring the effects on quality parameters of 30% (w/v) fructose solution, apple juice and milk. The results were compared with the continuous monochromatic low pressure (LPM) and medium pressure polychromatic (MPM) mercury lamps at the UV fluence of 10 mJ/cm2 that was determined based on 5-log microbial reduction requirement. The effects of HIP-1 and HIP-3 pulsed lamps on color, pH, and vitamin C, were comparable with the LPM lamp. For example, pH of fructose decreased by 1.94% for the LPM lamp and by 0.78% and 4.31% for HIP-1 and HIP-3, respectively. Treatment with the LPM lamp reduced the vitamin C content by 1.30% in apple juice and 35.13% in milk. In the case of pulsed lamps the reduction of vitamin C was 0.85% for HIP-1 and 1.78% for HIP-3 in apple juice, 12.31% (HIP-1) and 21.66% (HIP-3) in milk. HIP-2 and MPM lamps caused the most significant deterioration of the quality parameters in all tested liquids. The HIP-2 lamp decreased vitamin C by 8.52% in apple juice and 35.80% in milk, and also reduced pH of fructose solution by 5.29%. These results indicate that UV treatment with pulsed HIP-1 and HIP-3 sources could represent a promising alternative for the treatment of low UV transparent and opaque liquid foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

α :

absorption coefficient (cm−1)

λ :

wavelength (nm)

a* :

parameter in the CIELAB color scale positioned between green (negative values) and red (positive values)

A :

absorbance

A 254 :

absorbance at the wavelength of 254 nm

A 420 :

absorbance at the wavelength of 420 nm

b * :

parameter in the CIELAB color scale positioned between blue (negative values) and yellow (positive values)

C :

non-UV treated control

C main :

capacitor of the main discharge circuit

C pk :

peaking capacitor (part of the initiation circuit)

C sp :

voltage spike capacitor (for initiation of the discharge)

E :

fluence rate (mW/cm2)

H :

UV fluence (mJ/cm2)

I 0 :

incident irradiance, (mW/cm2)

l :

path length of demountable quartz cuvette (cm)

L* :

represent the lightness of the color in the CIELAB color scale (L * = 0 yields black and L * = 100 indicates diffuse white)

LPM:

low-pressure mercury UV lamp

HIP:

high-intensity pulsed UV lamp

HIP-1:

energy per pulse: 31 J; pulse frequency: 8 Hz; average electrical power: 310 W

HIP-2:

energy per pulse: 344 J; pulse frequency: 0.75 Hz; average electrical power: 258 W

HIP-3:

energy per pulse: 644 J; pulse frequency: 0.5 Hz; average electrical power: 322 W

MPM:

medium-pressure mercury UV lamp

PF:

Petri factor

R:

surface reflection coefficient

RC:

relative change (%)

S:

UV-treated sample

SF:

sensor factor

t:

exposure time (s)

UV:

Ultraviolet

References

  • Adzahan, N. (2006). Effects of ultraviolet treatment on water soluble vitamin retention in aqueous model solutions and apple juice. PhD Thesis. Department of Food Technology, Cornell University, Ithaca, NY, USA.

  • Ahmad, S., Gaucher, I., Rousseau, F., Beaucher, E., Piot, M., Grongnet, J. F., & Gaucheron, F. (2008). Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chemistry, 106(1), 11–17.

    Article  CAS  Google Scholar 

  • Altic, L. C., Rowe, M. T., & Grant, I. R. (2007). UV light inactivation of Mycobacterium avium subsp. paratuberculosis in milk as assessed by FASTPlaqueTB phage assay and culture. Applied and Environmental Microbiology, 73(11), 3728–3733.

    Article  CAS  Google Scholar 

  • Bender, D. A. (2003). Nutritional biochemistry of the vitamins. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2012). Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. Journal of Food Engineering, 108(3), 383–392.

    Article  Google Scholar 

  • Binkley, E. R., & Binkley, R. W. (1998). Unprotected carbohydrates. In E. R. Binkley & R. W. Binkley (Eds.), Carbohydrate Photochemistry (pp. 226–227). Washington: ACS.

    Google Scholar 

  • Bolton (2002). “Fluence–MP–Deep.xls” file including formulas for calculations of the Petri Factor and Sensor Factor. www.iuva.org. Accessed 21 Dec 2011.

  • Bolton, J. R. (2004). Fundamentals of ultraviolet treatment—terms and definitions do matter. IUVA News, 6(3), 27–30.

    Google Scholar 

  • Bolton, J. R. (2010). Ultraviolet applications handbook. Edmonton: ICC Lifelong Learn Inc.

    Google Scholar 

  • Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129(3), 209–215.

    Article  CAS  Google Scholar 

  • Buckow, R., & Heinz, V. (2008). High pressure processing—a database of kinetic information. Chemie Ingenieur Technik, 80(8), 1081–1095.

    Article  CAS  Google Scholar 

  • Burton, H. (1951). Ultraviolet irradiation of milk. Dairy Science Abstracts, 13(3), 229–244.

    Google Scholar 

  • Caminiti, I. M., Palgan, I., Munoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2010). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology. doi:10.1007/s11947-010-0365-x. in press.

  • Caminiti, I. M., Noci, F., Muñoz, A., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2011). Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chemistry, 124(4), 1387–1392.

    Article  CAS  Google Scholar 

  • Cardello, A. V. (1998). Perception of food quality. In I. A. Taub & R. P. Singh (Eds.), Food Storage Stability (pp. 2–31). Boca Raton: CRC Press.

    Google Scholar 

  • Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3(6), 797–803.

    Article  Google Scholar 

  • Chevrefils, G., Caron, E., Wright, H., Sakamoto, G., Payment, P., Barbeau, B., & Cairns, B. (2006). UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. IUVA News, 8(1), 38–45.

    Google Scholar 

  • Choi, L. H., & Nielsen, S. S. (2005). The effects of thermal and nonthermal processing methods on apple cider quality and consumer acceptability. Journal of Food Quality, 28(1), 13–29.

    Article  Google Scholar 

  • Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, I. S. (1998). A rapid method to monitor quality of apple juice during thermal processing. LWT- Food Science and Technology, 31(7–8), 612–616.

    Article  Google Scholar 

  • Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2011). High-intensity ultrasound processing of pineapple juice. Food and Bioprocess Technology. doi:10.1007/s11947-011-0746-9. in press.

  • Cserhalmi, Zs, Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science and Emerging Technologies, 7(1–2), 49–54.

    Article  CAS  Google Scholar 

  • Falguera, V., Pagán, J., & Ibarz, A. (2011). Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT- Food Science and Technology, 44(1), 115–119.

    Article  CAS  Google Scholar 

  • Fan, X., & Geveke, D. J. (2007). Furan formation in sugar solution and apple cider upon ultraviolet treatment. Journal of Agriculture and Food Chemistry, 55(19), 7816–7821.

    Article  CAS  Google Scholar 

  • Franz, C., Specht, I., Cho, G.-S., Graef, V., & Stahl, M. R. (2009). UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control, 20(11), 1103–1107.

    Article  CAS  Google Scholar 

  • Gilmore, T. M., & Dimick, P. S. (1979). Photochemical changes in major whey proteins of cow’s milk. Journal of Dairy Science, 62(2), 189–194.

    Article  CAS  Google Scholar 

  • Gómez-López, V. M., Koutchma, T., & Linden, K. (2012). Ultraviolet and pulsed light processing of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 185–223). Elsevier Inc., ISBN: 978-0-12-381470-8 (in press).

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2005). Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by ultraviolet light. Journal of Food Process Engineering, 28(5), 437–452.

    Article  Google Scholar 

  • Heering, W. (2004). UV sources—basics, properties and applications. IUVA News, 6(4), 7–13.

    Google Scholar 

  • Ibarz, A., Pagán, J., Panadés, R., & Garza, S. (2005). Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering, 69(2), 155–160.

    Article  Google Scholar 

  • Icier, F. (2012). Ohmic heating of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 305–367). Elsevier Inc., ISBN: 978-0-12-381470-8 (in press).

  • Jagger, J. (1967). Introduction to research in ultraviolet photobiology. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Keyser, M., Műller, I. A., Cilliers, F. P., Wihann, N., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354.

    Article  CAS  Google Scholar 

  • Knirsch, M. C., dos Santos, C. A., Vicente, A. A., & Penna, T. C. V. (2010). Ohmic heating—a review. Trends in Food Science & Technology, 21(9), 436–441.

    Article  CAS  Google Scholar 

  • Koutchma, T., & Orlowska, M. (2012). UV light for processing fruits and fruit products. In S. Rodrigues, & F. A. N. Fernandes (Eds.) Advances in fruit processing technologies. CRC Press Inc., ISBN 13: 9781439851524 (in press).

  • Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies, 5(2), 179–189.

    Article  Google Scholar 

  • Koutchma, T., Parisi, B., & Patazca, E. (2007). Validation of UV coiled tube reactor for fresh juices. Journal of Environmental Engineering and Science, 6(3), 319–328.

    Article  CAS  Google Scholar 

  • Koutchma, T. N., Forney, L. J., & Moraru, C. I. (2009). Ultraviolet light in food technology. Principles and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Krishnamurthy, K., Demirci, A., & Irudayaray, J. M. (2007). Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. Journal of Food Science, 72(7), M233–M239.

    Article  CAS  Google Scholar 

  • Linden, K. G., Thurston, J., Schaefer, R., & Malley, J. P., Jr. (2007). Enhanced UV inactivation of adenoviruses under polychromatic UV lamps. Applied and Environmental Microbiology, 73(23), 7571–7574.

    Article  CAS  Google Scholar 

  • López-Malo, A., & Palou, E. (2005). Ultraviolet light and food preservation. In G. Barbosa-Cánovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies (pp. 405–422). Boca Raton: CRC Press.

    Google Scholar 

  • Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science and Emerging Technologies, 10(4), 506–511.

    Article  CAS  Google Scholar 

  • Masschelein, W. J. (2002). Ultraviolet light in water and wastewater sanitation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Matak, K. E., Sumner, S. S., Duncan, S. E., Hovingh, E. R., Worobo, W., Hackney, C. R., & Pierson, M. D. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science, 90(7), 3178–3186.

    Article  CAS  Google Scholar 

  • Morales-de la Peña, M., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2010). Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT- Food Science and Technology, 43(6), 872–881.

    Article  Google Scholar 

  • Ngadi, M., Smith, J. P., & Cayouette, B. (2003). Kinetics of ultraviolet light inactivation of Escherichia coli O157:H7 in liquid foods. Journal of the Science of Food and Agriculture, 83(15), 1551–1555.

    Article  CAS  Google Scholar 

  • OMA–Official Methods of Analysis of AOAC International (2005). W. Horowitz (Ed.). AOAC International.

  • Oteiza, J. M., Giannuzzi, L., & Zaritzky, N. (2010). Ultraviolet treatment of orange juice to inactivate E. coli O157:H7 as affected by native microflora. Food and Bioprocess Technology, 3(4), 603–614.

    Article  Google Scholar 

  • Proctor, B. E., & Goldblith, S. A. (1951). Electromagnetic radiation fundamentals and their applications in food technology. Advances in Food Research, 3, 120–196.

    Article  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2008). Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chemistry, 109(2), 402–407.

    Article  CAS  Google Scholar 

  • Schaefer, R., & Grapperhaus, M. (2009). Pulsed lamps for water treatment. Presentation at North American Joint IOA-IUVA Regional Conference, Boston, MA, USA. 5 May 2009. http://www.phoenixsandt.com/literature/IOAIUVARegionalConference2009.pdf. Accessed 3 Nov 2011.

  • Schaefer, R., Grapperhaus, M., Schaefer, I., & Linden, K. (2007). Pulsed UV lamp performance and comparison with UV mercury lamps. Journal of Environmental Engineering and Science, 6(3), 303–310.

    Article  CAS  Google Scholar 

  • Stakeholder Hearing (2006). Food quality assurance and certification schemes. http://foodqualityschemes.jrc.ec.europa.eu/en/documents/Backgroundpaper_formatted_final.pdf. Accessed 3 Nov 2011.

  • Tikekar, R. V., Anantheswaran, R. C., & LaBorde, L. F. (2011). Ascorbic acid degradation in a model apple juice system and in apple juice during ultraviolet processing and storage. Journal of Food Science, 76(2), 62–71.

    Article  Google Scholar 

  • Tran, M. T. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies, 5(4), 495–502.

    Article  CAS  Google Scholar 

  • Triantaphylides, C., Schuchmann, H.-P., & Sonntag, C. V. (1982). Photolysis of d-fructose in aqueous solution. Carbohydrate Research, 100(1), 131–141.

    Article  CAS  Google Scholar 

  • van Aardt, M., Duncan, S. E., Marcy, J. E., Long, T. E., O’Keefe, S. F., & Nielsen-Sims, S. R. (2005). Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. Journal of Dairy Science, 88(3), 881–890.

    Article  Google Scholar 

  • Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J. E., Pérez-Won, M., Briones-Labarca, V., & Morales-Castro, J. (2011). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science and Emerging Technologies. doi:10.1016/j.ifset.2011.10.009.

  • Wishner, L. A. (1964). Light-induced oxidations in milk. Journal of Dairy Science, 47, 216–221.

    Article  CAS  Google Scholar 

  • Ye, Z. (2006). UV disinfection between concentric cylinders. PhD Thesis. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, USA.

  • Yousef, A. E., & Marth, E. H. (1986). Use of ultraviolet energy to degrade aflatoxin M1 in raw or heated milk with and without added peroxide. Journal of Dairy Science, 69, 2243–2247.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support for this research through the “Risk Mitigation Initiative” at the Agriculture and Agri-Food Canada.

Source of fund

Research was funded through “Risk Mitigation Initiative” at Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Orlowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlowska, M., Koutchma, T., Grapperhaus, M. et al. Continuous and Pulsed Ultraviolet Light for Nonthermal Treatment of Liquid Foods. Part 1: Effects on Quality of Fructose Solution, Apple Juice, and Milk. Food Bioprocess Technol 6, 1580–1592 (2013). https://doi.org/10.1007/s11947-012-0779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0779-8

Keywords

Navigation