Skip to main content
Log in

Impact of Electric Pulse Treatment on Selective Extraction of Intracellular Compounds from Saccharomyces cerevisiae Yeasts

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Treatments by high-voltage electrical discharges (HVED, needle-plate electrode geometry, U = 40 kV, t p ≈ 0.5 μs) and pulsed electric field (PEF, plate–plate electrode geometry, E = 5–40 kV/cm, t p ≈ 8.3 μs) were evaluated as tools for selective extraction of different intracellular components from the wine Saccharomyces cerevisiae (bayanus) yeasts in a 0.5% (w/w) aqueous suspension. The pulses in the form of damped oscillations and exponential decay were applied in HVED and PEF modes of treatment, respectively. The extraction efficiency results obtained using HVED and PEF techniques were compared with those for high-pressure homogenization technique. The HVED and PEF treatments always resulted in incomplete damage of yeast cells, though efficiency of HVED was higher than that of PEF. The high selectivity of extraction of ionic substances, proteins, and nucleic acids was demonstrated; e.g., electric pulse treatments at E = 40 kV/cm and N = 500 allowed extraction of ≈80% and ≈70% of ionic substances, ≈4% and ≈1% of proteins and ≈30% and ≈16% of nucleic acids in cases of HVED and PEF modes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angersbach, A., Heinz, V., & Knorr, D. (1999). Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnology Progress, 15, 753–762.

    Article  CAS  Google Scholar 

  • Balasundaram, B., Harrison, S., & Bracewell, D. G. (2009). Advances in product release strategies and impact on bioprocess design. Trends in Biotechnology, 27, 477–485.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • De Vito, F., Ferrari, G., Lebovka, N. I., Shynkaryk, N. V., & Vorobiev, E. (2008). Pulse duration on efficiency of soft cellular tissue disintegration by pulsed electric fields. Food and Bioprocess Technology, 1, 307–313.

    Article  Google Scholar 

  • El Zakhem, H., Lanoisellé, J. L., Lebovka, N. I., Nonus, M., & Vorobiev, E. (2006). The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids and Surfaces. B, Biointerfaces, 47, 189–197.

    Article  CAS  Google Scholar 

  • Ganeva, V., Galutzov, B., Eynard, N., & Teissié, J. (2001). Electroinduced extraction of β-galactosidase from Kluyveromyces lactis. Applied Microbiology and Biotechnology, 56, 411–413.

    Article  CAS  Google Scholar 

  • Ganeva, V., Galutzov, B., & Teissié, J. (2003). High yield electroextraction of proteins from yeast by a flow process. Analytical Biochemistry, 315, 77–84.

    Article  CAS  Google Scholar 

  • Geciova, J. A., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry—a review. International Dairy Journal, 12, 541–553.

    Article  CAS  Google Scholar 

  • Glasel, J. A. (1995). Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. BioTechniques, 18, 62–63.

    CAS  Google Scholar 

  • Gros, C., Lanoisellé, J. L., & Vorobiev, E. (2003). Towards an alternative extraction process for linseed oil. Chemical Engineering Research and Design, 81, 1059–1065.

    Article  CAS  Google Scholar 

  • Gros, C., Lanoisellé, J. L., & Vorobiev, E. (2008). Application of high voltage electrical discharges for the aqueous extraction from oilseeds and other plants. In E. Vorobiev & N. I. Lebovka (Eds.), Electrotechnologies for extraction from food plants and biomaterials (pp. 217–235). New York: Springer.

    Google Scholar 

  • Harrison, S. T. L. (1991). Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnology Advances, 9, 217–240.

    Article  CAS  Google Scholar 

  • Knorr, D., & Angersbach, A. (1998). Impact of high intensity electric field pulses on plant membrane permeabilization. Trends in Food Science and Technology, 9, 185–191.

    Article  CAS  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346.

    Article  Google Scholar 

  • Liu, D., Savoire, R., Vorobiev, E., & Lanoisellé, J. L. (2010). Effect of disruption methods on the dead-end microfiltration behavior of yeast suspension. Separation Science and Technology, 34, 5–12.

    Google Scholar 

  • Loginov, M., Lebovka, N., Larue, O., Shynkaryk, M., Nonus, M., Lanoisellé, J. L., et al. (2009). Effect of high voltage electrical discharges on filtration properties of Saccharomyces cerevisiae yeast suspensions. Journal of Membrane Science, 346, 288–295.

    Article  Google Scholar 

  • Middelberg, A. P. G. (1995). Process-scale disruption of microorganisms. Biotechnology Advances, 13, 491–551.

    Article  CAS  Google Scholar 

  • Moubarik, A., El-Belghiti, K., & Vorobiev, E. (2010). Kinetic model of solute aqueous extraction from Fennel (Foeniculum vulgare) treated by pulsed electric field, electrical discharges and ultrasonic irradiations. Food and Bioproducts Processing. doi:10.1016/j.fbp.2010.09.002.

  • Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34.

    Article  Google Scholar 

  • Ohshima, T., Hama, Y., & Sato, M. (2000). Releasing profiles of gene products from recombinant Escherichia coli in a high-voltage pulsed electric field. Biochemical Engineering Journal, 5, 149–155.

    Article  CAS  Google Scholar 

  • Ohshima, T., Sato, M., & Saito, M. (1995). Selective release of intracellular protein using pulsed electric field. Journal of Electrostatics, 35, 103–112.

    Article  CAS  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Saulis, G. (2010). Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Engineering Reviews, 2, 52–73.

    Article  Google Scholar 

  • Schulze, U. (1995). Anaerobic physiology of Saccharomyces cerevisiae. PhD Thesis. Lyngby: Department of Biotechnology, Technical University of Denmark

  • Shynkaryk, M. V., Lebovka, N. I., Lanoisellé, J. L., Nonus, M., Bedel-Clotour, C., & Vorobiev, E. (2009). Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). Journal of Food Engineering, 92, 189–195.

    Article  Google Scholar 

  • Vogel, A., & Busch, S. (1996). Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. Journal of the Acoustical Society of America, 100, 148–165.

    Article  Google Scholar 

  • Vorobiev, E., & Lebovka, N. I. (2006). Extraction of intercellular components by pulsed electric fields. In J. Raso & V. Heinz (Eds.), Pulsed electric field technology for the food industry: fundamentals and applications, pp 153–194. New York: Springer.

    Google Scholar 

  • Vorobiev, E., & Lebovka, N. I. (2008). Pulsed electric fields induced effects in plant tissues: fundamental aspects and perspectives of applications. In E. Vorobiev & N. I. Lebovka (Eds.), Electrotechnologies for extraction from food plants and biomaterials, pp 39–82. New York: Springer.

    Google Scholar 

  • Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41, 135–160.

    Article  CAS  Google Scholar 

  • Xiang, B. Y., Ngadi, M. O., Ochoa-Martinez, L. A., & Simpson, M. V. (2009). Pulsed electric field-induced structural modification of whey protein isolate. Food and Bioprocess Technology. doi:10.1007/s11947-009-0266-z.

  • Zhang, Q., Monsalve-Gonzalez, A., Qin, B. L., Barbosa-Canovas, G. V., & Swanson, B. G. (1994). Inactivation of Saccharomyces cerevisiae in apple juice by square wave and exponential-decay pulsed electric fields. Journal of Food Process Engineering, 17, 469–478.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the China Scholarship Council (CSC), and thank Dr. N.S. Pivovarova for her help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Lebovka, N.I. & Vorobiev, E. Impact of Electric Pulse Treatment on Selective Extraction of Intracellular Compounds from Saccharomyces cerevisiae Yeasts. Food Bioprocess Technol 6, 576–584 (2013). https://doi.org/10.1007/s11947-011-0703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0703-7

Keywords

Navigation