Skip to main content
Log in

Formulation of Protective Agents for Improvement of Lactobacillus salivarius I 24 Survival Rate Subjected to Freeze Drying for Production of Live Cells in Powderized Form

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effectiveness of formulations using different protective agents to maintain viability of Lactobacillus salivarius I 24 during freeze drying for production of live cell in powdered form was investigated. The influence of prefreezing and cultivation conditions on viability of cells after freeze drying was also studied. Surface methodology was used to determine the most suitable combination of the protective agents. Concentrations of skim milk, sucrose, glycerol, and calcium carbonate were selected as operating variables, and survivals of cultures after freeze drying were used as results. Skim milk and sucrose were better protective agents than glycerol and calcium carbonate when used individually for preserving L. salivarius I 24 during freeze drying. Their protective abilities could be enhanced significantly when using them as a mixture (9.85% w/v skim milk and 10.65% w/v sucrose). Prefreezing of the cells at −80°C for 5 h prior to freeze drying and cultivation with regulated pH and temperature gave the highest cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abraham, A., De Antoni, G. L., & Anon, M. C. (1990). Effect of calcium on the cryopreservation of Lactobacillus bulgaricus in different freezing media. Cryobiology, 27, 336–342. doi:10.1016/0011-2240(90)90033-Z.

    Article  Google Scholar 

  • Alaeddinoglu, G., Guven, A., & Ozilgen, M. (1989). Activity-loss kinetics of freeze-dried lactic acid starter cultures. Enzyme and Microbial Technology, 11, 765–769. doi:10.1016/0141-0229(89)90127-0.

    Article  Google Scholar 

  • Alegeria, A., Lopez, I., Ruiz, J. I., Saenz, J., Fernandez, E., Zarazaga, M., et al. (2004). High tolerance of wild Lactobacillus plantarum and Oenoccoccus oeni strains to lyophilization and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters, 230, 53–61. doi:10.1016/S0378-1097(03)00854-1.

    Article  Google Scholar 

  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technology, 1, 43–63. doi:10.1007/s11947-007-0021-2.

    Article  Google Scholar 

  • Claude, P. C., Francine, M., Yves, R., & Enis, R. (1996). Effect of polymer and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International, 29, 555–562. doi:10.1016/0963-9969(95)00050-X.

    Article  Google Scholar 

  • Conrad, P. B., Miller, D. P., Cielenski, P. R., & Pablo, J. J. (2000). Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology, 41, 17–24. doi:10.1006/cryo.2000.2260.

    Article  CAS  Google Scholar 

  • Cox, G. C., Mac Bean, R. D., & Chandler, G. (1977). Lactic acid production by Lactobacillus bulgaricus in supplemented whey ultrafiltrate. Australian Journal of Dairy Technology, 32, 19–22.

    CAS  Google Scholar 

  • Fonseca, F., Passot, S., Cunin, O., & Marin, M. (2004). Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnology Progress, 20, 229–238. doi:10.1021/bp034136n.

    Article  CAS  Google Scholar 

  • Fontana, R., Canepari, P., & Salta, G. (1979). Alterations in peptidoglycan chemical composition associated with rod to sphere transition in a conditional mutant of Klebsiella pnuemoniae. Journal of Bacteriology, 139, 1028.

    CAS  Google Scholar 

  • Jennings, T. A., & Duan, H. (1995). Calorimetric monitoring of lyophilisation. PDA Journal of Pharmaceutical Science and Technology, 49, 272–282.

    CAS  Google Scholar 

  • Jin, L. Z., Ho, Y. W., Ali, A. M., Abdullah, N., & Jalaludin, S. (1996). Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chickens. Letters in Applied Microbiology, 23, 67–71. doi:10.1111/j.1472-765X.1996.tb00032.x.

    Article  CAS  Google Scholar 

  • King, A. E., & Lin, H. J. (1995). Studies on the effect of protectants on Lactobacillus acidophilus strain dehydrated under controlled low-temperature vacuum dehydration and freeze-drying by using response surface methodology. Journal of Science Food Agriculture, 68, 191–196. doi:10.1002/jsfa.2740680209.

    Article  CAS  Google Scholar 

  • King, A. E., & Su, J. T. (1993). Dehydration of Lactobacillus acidophilus. Process Biochemistry, 28, 47–52. doi:10.1016/0032-9592(94)80035-9.

    Article  CAS  Google Scholar 

  • Liew, S. L., Ariff, A. B., Raha, A. R., & Ho, Y. W. (2005). Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. International Journal of Food Microbiology, 102, 137–142. doi:10.1016/j.ijfoodmicro.2004.12.009.

    Article  CAS  Google Scholar 

  • Marr, A. G., & Ingraham, J. L. (1962). Effect of temperature on the composition of fatty acids in Escherichia coli. Journal of Bacteriology, 84, 1260–1265.

    CAS  Google Scholar 

  • Modler, H. W., & Villa-Garcia, L. (1993). The growth of Bifidobacterium longum in whey-based medium and viability of this organism in frozen yoghurt with low and high levels of developed acidity. Culture Dairy Production, 28, 4–8.

    Google Scholar 

  • Pikal, M. J., & Shah, S. (1990). The collapse temperature in freeze-drying: Dependence on measurement methodology and rate of water removal from the glassy phase. International Journal of Pharmaceuticals, 62, 165–186. doi:10.1016/0378-5173(90)90231-R.

    Article  CAS  Google Scholar 

  • Rudolph, A. S., & Crowe, J. H. (1985). Membrane stabilization during freezing: The role of two natural cryopotectants, trehalose and praline. Cryobiology, 22, 367–377. doi:10.1016/0011-2240(85)90184-1.

    Article  CAS  Google Scholar 

  • Sabikhi, L., Babu, R., Thompkinson, D. K., & Kapila, S. (2009). Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technology. doi:10.1007/s11947-008-0135-1.

  • Simatos, D., Blond, G., Le Meste, M., & Morice, M. (1994). Conservation des bacteries lactiques par congelation et lyophilisation. In H. De Roissard & F. M. Luquest (Eds.), Bacteries Lactiques (pp. 555–572). Grenoble, France: Lorica.

    Google Scholar 

  • Streit, F., Corrieu, G., & Beal, C. (2009). Effect of centrifugation conditions on the cryotolerance of Lactobacillus bulgaricus CFL1. Food Bioprocess Technology. doi:10.1007/s11947-008-0067-9.

  • Zayed, G., & Roos, Y. H. (2003). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry, 45, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbakariya B. Ariff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming, L.C., Rahim, R.A., Wan, H.Y. et al. Formulation of Protective Agents for Improvement of Lactobacillus salivarius I 24 Survival Rate Subjected to Freeze Drying for Production of Live Cells in Powderized Form. Food Bioprocess Technol 2, 431–436 (2009). https://doi.org/10.1007/s11947-009-0184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0184-0

Keywords

Navigation