Skip to main content

Advertisement

Log in

B-Cell Targeting Agents in the Treatment of Multiple Sclerosis

  • MULTIPLE SCLEROSIS AND RELATED DISORDERS (BM SEGAL, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

The aims of this article are to discuss the potential role of B lymphocytes in the pathogenesis of multiple sclerosis (MS) and in the mechanisms of action of approved and emerging disease modifying therapies. Over the last few years, significant progress has been made in the introduction of novel pharmacologic treatments that reduce the frequency of clinical exacerbations and radiological lesion formation in relapsing remitting MS. The mechanisms of action of a number of these disease modifying therapies (DMT) implicate B cells in the pathogenesis, as well as in the regulation, of MS. Further research into B-cell subset trafficking patterns, functional activities and interactions with other immune cells in the context of neuroinflammation is likely to inform the development of future generations of DMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

multiple sclerosis

DMT:

disease modifying therapies

CNS:

central nervous system

CSF:

cerebrospinal fluid

RR:

relapsing-remitting

SP:

secondary-progressive

PP:

primary progressive

OCBs:

oligoclonal bands

IL:

interleukin

EAE:

experimental autoimmune encephalomyelitis

Ig:

immunoglobulin

TACI:

Transmembrane Activator and CAML [calcium-modulator and cyclophilin ligand]-Interactor

BLys:

B Lymphocyte stimulator

APRIL:

a proliferation inducing ligand

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis, and effect of latitude. J Neurol Neurosurg Psychiatry. 2013. doi:10.1136/jnnp-2012-304695.

  2. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.

    Article  PubMed  Google Scholar 

  3. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associated with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.

    Article  PubMed  Google Scholar 

  4. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116:2385–92.

    Article  PubMed  CAS  Google Scholar 

  5. O'Connor KC, Lopez-Amaya C, Gagne D, Lovato L, Moore-Odom NH, Kennedy J, et al. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol. 2010;223:92–9.

    Article  PubMed  Google Scholar 

  6. Rostasy K, Mader S, Schanda K, Huppke P, Gärtner J, Kraus V, et al. Anti-myelin oligodendrocyte glycoprotein antibodies in pediatric patients with optic neuritis. Arch Neurol. 2012;69:752–6.

    PubMed  Google Scholar 

  7. Vogt MH, Teunissen CE, Iacobaeus E, Heijnen DA, Breij EC, Olsson T, et al. Cerebrospinal fluid anti-myelin antibodies are related to magnetic resonance measures of disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80:1110–5.

    Article  PubMed  CAS  Google Scholar 

  8. Tomassini V, De Giglio L, Reindl M, Russo P, Pestalozza I, Pantano P, et al. Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler. 2007;13:1086–94.

    Article  PubMed  CAS  Google Scholar 

  9. Villar LM, Sádaba MC, Roldán E, Masjuan J, González-Porqué P, Villarrubia N, et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest. 2005;115:187–94.

    PubMed  CAS  Google Scholar 

  10. Wang H, Munger KL, Reindl M, O'Reilly EJ, Levin LI, Berger T, et al. Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology. 2008;71:1142–6.

    Article  PubMed  CAS  Google Scholar 

  11. Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med. 2007;204:2363–72.

    Article  PubMed  CAS  Google Scholar 

  12. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367:115–23. In this study the authors found that antibodies specific for a potassium channel expressed by glial cells are selectively elevated in the sera of individuals with MS. These results provide further evidence of autoreactive B cell dysregulation in MS and could lead to the discovery of a novel diagnostic biomarker.

    Article  PubMed  CAS  Google Scholar 

  13. McDonald KG, McDonough JS, Newberry RD. Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J Immunol. 2005;174:5720–8.

    PubMed  CAS  Google Scholar 

  14. Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med. 1996;184:2271–8.

    Article  PubMed  CAS  Google Scholar 

  15. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008;118:3420–30.

    PubMed  CAS  Google Scholar 

  16. Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185:2240–52. This paper describes a subset of B cells that produce IL-10 and suppress experimental autoimmune encephalomyelitis. The presence of analogous B cell subsets in patients with MS could explain the mechanism of action of disease modifying therapies that target B cells in MS.

    Article  PubMed  CAS  Google Scholar 

  17. Niino M, Fukazawa T, Minami N, Amino I, Tashiro J, Fujiki N, et al. CD5-positive B cell subsets in secondary progressive multiple sclerosis. Neurosci Lett. 2012;523:56–61.

    Article  PubMed  CAS  Google Scholar 

  18. Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med. 1998;187:537–46.

    Article  PubMed  CAS  Google Scholar 

  19. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol. 2007;178:3447–56.

    PubMed  CAS  Google Scholar 

  20. Byrnes AA, McArthur JC, Karp CL. Interferon-beta therapy for multiple sclerosis induces reciprocal changes in interleukin-12 and interleukin-10 production. Ann Neurol. 2002;51:165–74.

    Article  PubMed  CAS  Google Scholar 

  21. Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, et al. Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naïve/memory Breg ratio during a relapse but not in remission. J Neuroimmunol. 2011;239:80–6.

    Article  PubMed  CAS  Google Scholar 

  22. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007;178:6092–9.

    PubMed  CAS  Google Scholar 

  23. Wright BR, Warrington AE, Edberg DD, Edberg DE, Rodriguez M. Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol. 2009;66:1456–9.

    Article  PubMed  Google Scholar 

  24. Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2000;97:6820–5.

    Article  PubMed  CAS  Google Scholar 

  25. van Engelen BG, Miller DJ, Pavelko KD, Hommes OR, Rodriguez M. Promotion of remyelination by polyclonal immunoglobulin in Theiler's virus-induced demyelination and in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1994;57(Suppl):65–8.

    Article  PubMed  Google Scholar 

  26. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology. 1993;43:655–61.

  27. Rudick RA, Goelz SE. Beta-interferon for multiple sclerosis. Exp Cell Res. 2011;317:1301–11.

    Article  PubMed  CAS  Google Scholar 

  28. Ramgolam VS, Sha Y, Marcus KL, Choudhary N, Troiani L, Chopra M, et al. B cells as a therapeutic target for IFN-β in relapsing-remitting multiple sclerosis. J Immunol. 2011;186:4518–26. The authors report that B cells from untreated MS patients lose Th17 polarizing properties following incubation with recombinant IFNb in vitro.

    Article  PubMed  CAS  Google Scholar 

  29. Comabella M, Kakalacheva K, Río J, Münz C, Montalban X, Lünemann JD. EBV-specific immune responses in patients with multiple sclerosis responding to IFNβ therapy. Mult Scler. 2012;18:605–9.

    Article  PubMed  Google Scholar 

  30. Johnson KP. Glatiramer acetate for treatment of relapsing-remitting multiple sclerosis. Expert Rev Neurother. 2012;12:371–84.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45:1268–76.

    Article  PubMed  CAS  Google Scholar 

  32. Aharoni R, Teitelbaum D, Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 1997;94:10821–6.

    Article  PubMed  CAS  Google Scholar 

  33. Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut S. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler. 2001;7:209–19.

    PubMed  CAS  Google Scholar 

  34. Weber MS, Prod'homme T, Youssef S, Dunn SE, Rundle CD, Lee L, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med. 2007;13:935–43.

    Article  PubMed  CAS  Google Scholar 

  35. Carpintero R, Brandt KJ, Gruaz L, Molnarfi N, Lalive PH, Burger D. Glatiramer acetate triggers PI3Kδ/Akt and MEK/ERK pathways to induce IL-1 receptor antagonist in human monocytes. Proc Natl Acad Sci U S A. 2010;107:17692–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kala M, Rhodes SN, Piao WH, Shi FD, Campagnolo DI, Vollmer TL. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol. 2010;221:136–45.

    Article  PubMed  CAS  Google Scholar 

  37. Begum-Haque S, Christy M, Ochoa-Reparaz J, Nowak EC, Mielcarz D, Haque A, et al. Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol. 2011;232:136–44.

    Article  PubMed  CAS  Google Scholar 

  38. Ireland SJ, Blazek M, Harp CT, Greenberg B, Frohman EM, Davis LS, et al. Antibody-independent B cell effector functions in relapsing remitting multiple sclerosis: clues to increased inflammatory and reduced regulatory B cell capacity. Autoimmunity. 2012;45:400–14.

    Article  PubMed  CAS  Google Scholar 

  39. Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    Article  PubMed  CAS  Google Scholar 

  40. Postigo AA, Pulido R, Campanero MR, Acevedo A, García-Pardo A, Corbi AL, et al. Differential expression of VLA-4 integrin by resident and peripheral blood B lymphocytes. Acquisition of functionally active alpha 4 beta 1-fibronectin receptors upon B cell activation. Eur J Immunol. 1991;21:2437–45.

    Article  PubMed  CAS  Google Scholar 

  41. Kowarik MC, Pellkofer HL, Cepok S, Korn T, Kümpfel T, Buck D, et al. Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology. 2011;76:1214–21.

    Article  PubMed  CAS  Google Scholar 

  42. Stüve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S, et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2006;59:743–7.

    Article  PubMed  Google Scholar 

  43. Stüve O. The effects of natalizumab on the innate and adaptive immune system in the central nervous system. J Neurol Sci. 2008;274:39–41.

    Article  PubMed  Google Scholar 

  44. Villar LM, García-Sánchez MI, Costa-Frossard L, Espiño M, Roldán E, Páramo D, et al. Immunological markers of optimal response to natalizumab in multiple sclerosis. Arch Neurol. 2012;69:191–7. The authors report that therapeutic responsiveness to natalizumab correlates with reductions in intrathecal IgM levels and in the frequency of CD8+ plasmablasts. Their data supports the contention that natalizumab regulates MS disease activity, at least in part, through its effects on B cells.

    Article  PubMed  Google Scholar 

  45. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.

    Article  PubMed  CAS  Google Scholar 

  46. O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–303.

    Article  PubMed  Google Scholar 

  47. Gold R, Wolinsky JS. Pathophysiology of multiple sclerosis and the place of teriflunomide. Acta Neurol Scand. 2011;124:75–84.

    Article  PubMed  CAS  Google Scholar 

  48. Freedman MS, Wolinsky JS, Wamil B, Confavreux C, Comi G, Kappos L, et al. Teriflunomide added to interferon-β in relapsing multiple sclerosis: a randomized phase II trial. Neurology. 2012;78:1877–85.

    Article  PubMed  CAS  Google Scholar 

  49. Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation. 1996;61:635–42.

    Article  PubMed  CAS  Google Scholar 

  50. Yan Y, Verbeken E, Yu L, Rutgeerts O, Goebels J, Segers C, et al. Effects of a short course of leflunomide on T-independent B-lymphocyte xenoreactivity and on susceptibility of xenografts to acute or chronic rejection. Transplantation. 2005;79:135–41. discussion 133–4.

    Article  PubMed  CAS  Google Scholar 

  51. Ramos-Barrón MA, Gómez-Alamillo C, Santiuste I, Agüeros C, Cosme LS, Benito A, et al. Leflunomide derivative FK778 inhibits production of antibodies in an experimental model of alloreactive T-B cell interaction. Exp Clin Transplant. 2009;7:218–24.

    PubMed  Google Scholar 

  52. Merrill JE, Hanak S, Pu SF, Liang J, Dang C, Iglesias-Bregna D, et al. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol. 2009;256:89–103.

    Article  PubMed  CAS  Google Scholar 

  53. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukemia: a randomized, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    Article  PubMed  CAS  Google Scholar 

  54. Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at 24 weeks. Arthritis Rheum. 2006;54:2793–806.

    Article  PubMed  CAS  Google Scholar 

  55. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.

    Article  PubMed  CAS  Google Scholar 

  56. Rommer PS, Patejdl R, Winkelmann A, Benecke R, Zettl UK. Rituximab for secondary progressive multiple sclerosis: a case series. CNS Drugs. 2011;25:607–13.

    Article  PubMed  CAS  Google Scholar 

  57. Hawker K, O'Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66:460–71.

    Article  PubMed  CAS  Google Scholar 

  58. Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ, Lyons JA, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch Neurol. 2010;67:707–14.

    Article  PubMed  Google Scholar 

  59. Petereit HF, Moeller-Hartmann W, Reske D, Rubbert A. Rituximab in a patient with multiple sclerosis—effect on B cells, plasma cells, and intrathecal IgG synthesis. Acta Neurol Scand. 2008;117:399–403.

    Article  PubMed  CAS  Google Scholar 

  60. Monson NL, Cravens P, Hussain R, Harp CT, Cummings M, de Pilar Martin M, et al. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis. PLoS One. 2011;6:e17103.

    Article  PubMed  CAS  Google Scholar 

  61. Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomized, placebo-controlled, multicenter trial. Lancet. 2011;378:1779–87.

    Article  PubMed  CAS  Google Scholar 

  62. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15:289–302.

    Article  PubMed  CAS  Google Scholar 

  63. Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam KP, et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol. 2008;180:3655–59.

    PubMed  CAS  Google Scholar 

  64. Tak PP, Thurlings RM, Rossier C, Nestorov I, Dimic A, Mircetic V, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 2008;58:61–72.

    Article  PubMed  CAS  Google Scholar 

  65. Dall'Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 2007;56:4142–50.

    Article  PubMed  Google Scholar 

  66. Visser LH, Beekman R, Tijssen CC, Uitdehaag BM, Lee ML, Movig KL, et al. A randomized, double-blind, placebo-controlled pilot study of i.v. immune globulins in combination with i.v. methylprednisolone in the treatment of relapses in patients with MS. Mult Scler. 2004;10:89–91.

    Article  PubMed  CAS  Google Scholar 

  67. Otsuki T, Yamada O, Yata K, Sakaguchi H, Kurebayashi J, Yawata Y, et al. Expression and production of interleukin 10 in human myeloma cell lines. Br J Haematol. 2000;111:835–42.

    Article  PubMed  CAS  Google Scholar 

  68. Matthes T, Werner-Favre C, Zubler RH. Cytokine expression and regulation of human plasma cells: disappearance of interleukin-10 and persistence of transforming growth factor-beta 1. Eur J Immunol. 1995;25:508–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Tiffany J. Braley declares that she has no conflict of interest.

Benjamin M. Segal has served as a consultant for Biogen Idec and Bristol-Myers Squibb, has received grant support from Teva Pharmaceuticals and Biogen Idec, and has had travel/accommodations expenses covered/reimbursed by Biogen Idec and Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Segal MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braley, T.J., Segal, B.M. B-Cell Targeting Agents in the Treatment of Multiple Sclerosis. Curr Treat Options Neurol 15, 259–269 (2013). https://doi.org/10.1007/s11940-013-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-013-0232-y

Keywords

Navigation