Skip to main content
Log in

Diagnostic and Management Implications of Basic Science Advances in Barrett’s Esophagus

  • Esophagus (E Dellon, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Opinion statement

Barrett’s esophagus (BE) is a well-established premalignant condition for esophageal adenocarcinoma (EAC), a cancer that has increased in the Western world by nearly sixfold over the past three decades and is associated with a dismal 5-year survival rate (<20 %) especially when detected at a symptomatic state. Given the dramatic rise in EAC incidence and poor outcomes, much attention has focused on screening and surveillance in BE with a goal of identifying curable lesions and improving outcomes in patients with EAC. The limitations of current screening and surveillance strategies provide the necessary impetus to improve diagnostic accuracy and risk stratification of patients with BE. Biomarkers have the potential to predict risk of progression to cancer, identify patients most likely to respond to endoscopic eradication therapies, and ultimately influence patient management and outcomes. The goal of identifying such a biomarker or panel of biomarkers ready for clinical application remains elusive. This review highlights the recent advances in the field of biomarkers. It is increasingly being recognized that a single biomarker is suboptimal in accurate clinical risk stratification of individuals at highest risk for progression to cancer and an ideal risk stratification tool should include a panel of biomarkers in conjunction with clinical and endoscopic factors. Finally, we review advances in our screening strategies with use of Cytosponge, transnasal endoscopy, and tethered capsule endomicroscopy and surveillance strategies with use of advanced imaging techniques. Feasibility of these novel technologies for large population screening and surveillance needs to be assessed in future trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thrift AP, Whiteman DC. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol. 2012;23:3155–62.

    Article  CAS  PubMed  Google Scholar 

  2. Spechler SJ, Sharma P, Souza RF, et al. American Gastroenterological Association technical review on the management of Barrett's esophagus. Gastroenterology. 2011;140:e18-52. quiz e13.

    Article  Google Scholar 

  3. American Gastroenterological A, Spechler SJ, Sharma P, et al. American Gastroenterological Association medical position statement on the management of Barrett's esophagus. Gastroenterology. 2011;140:1084–91.

    Article  Google Scholar 

  4. Wang KK, Sampliner RE. Practice Parameters Committee of the American College of G. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett's esophagus. Am J Gastroenterol. 2008;103:788–97.

    Article  PubMed  Google Scholar 

  5. Committee ASoP, Evans JA, Early DS, et al. The role of endoscopy in Barrett's esophagus and other premalignant conditions of the esophagus. Gastrointest Endosc. 2012;76:1087–94.

    Article  Google Scholar 

  6. Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut. 2014;63:7–42.

    Article  PubMed  Google Scholar 

  7. Rex DK, Cummings OW, Shaw M, et al. Screening for Barrett's esophagus in colonoscopy patients with and without heartburn. Gastroenterology. 2003;125:1670–7.

    Article  PubMed  Google Scholar 

  8. Hayeck TJ, Kong CY, Spechler SJ, et al. The prevalence of Barrett's esophagus in the US: estimates from a simulation model confirmed by SEER data. Dis Esophagus. 2010;23:451–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wani S, Falk G, Hall M, et al. Patients with nondysplastic Barrett's esophagus have low risks for developing dysplasia or esophageal adenocarcinoma. Clin Gastroenterol Hepatol. 2011;9:220–7. quiz e26.

    Article  PubMed  Google Scholar 

  10. Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of adenocarcinoma among patients with Barrett's esophagus. N Engl J Med. 2011;365:1375–83.

    Article  CAS  PubMed  Google Scholar 

  11. Desai TK, Krishnan K, Samala N, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett's oesophagus: a meta-analysis. Gut. 2012;61:970–6.

    Article  PubMed  Google Scholar 

  12. Wani S, Mathur SC, Curvers WL, et al. Greater interobserver agreement by endoscopic mucosal resection than biopsy samples in Barrett's dysplasia. Clin Gastroenterol Hepatol. 2010;8:783–8.

    Article  PubMed  Google Scholar 

  13. Wani S, Falk GW, Post J, et al. Risk factors for progression of low-grade dysplasia in patients with Barrett's esophagus. Gastroenterology. 2011;141:1179–86. 1186 e1. Results of from this multicenter consoritum study demonstrated a low risk of progression to high grade dysplasia and esophageal adenocarcinoma in patients with LGD calling for improved risk stratification in patients with LGD.

    Article  PubMed  Google Scholar 

  14. Duits LC, Phoa KN, Curvers WL, et al. Barrett's oesophagus patients with low-grade dysplasia can be accurately risk-stratified after histological review by an expert pathology panel. Gut 2014 (in press).

  15. Rastogi A, Puli S, El-Serag HB, et al. Incidence of esophageal adenocarcinoma in patients with Barrett's esophagus and high-grade dysplasia: a meta-analysis. Gastrointest Endosc. 2008;67:394–8.

    Article  PubMed  Google Scholar 

  16. Shaheen NJ, Weinberg DS, Denberg TD, et al. Upper endoscopy for gastroesophageal reflux disease: best practice advice from the clinical guidelines committee of the American College of Physicians. Ann Intern Med. 2012;157:808–16.

    Article  PubMed  Google Scholar 

  17. Corley DA, Levin TR, Habel LA, et al. Surveillance and survival in Barrett's adenocarcinomas: a population-based study. Gastroenterology. 2002;122:633–40.

    Article  PubMed  Google Scholar 

  18. Corley DA, Mehtani K, Quesenberry C, et al. Impact of endoscopic surveillance on mortality from Barrett's esophagus-associated esophageal adenocarcinomas. Gastroenterology. 2013;145:312-9 e1. This is an important study that evaluated the role of surveillance in patients with Barrett's esophagus. No impact of surveillance on mortality was noted in this study challenging our current paradigm of surveillance in Barrett's esophagus.

    PubMed  Google Scholar 

  19. Tschanz ER. Do 40 % of patients resected for barrett esophagus with high-grade dysplasia have unsuspected adenocarcinoma? Arch Pathol Lab Med. 2005;129:177–80.

    PubMed  Google Scholar 

  20. Wani S, Sharma P. Endoscopic surface imaging of Barrett's Esophagus: an optimistic view. Gastroenterology. 2007;133:11–3.

    Article  PubMed  Google Scholar 

  21. Peters FP, Curvers WL, Rosmolen WD, et al. Surveillance history of endoscopically treated patients with early Barrett's neoplasia: nonadherence to the Seattle biopsy protocol leads to sampling error. Dis Esophagus. 2008;21:475–9.

    Article  CAS  PubMed  Google Scholar 

  22. Abrams JA, Kapel RC, Lindberg GM, et al. Adherence to biopsy guidelines for Barrett's esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7:736–42. quiz 710.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93:1054–61.

    Article  CAS  PubMed  Google Scholar 

  24. Timmer MR, Sun G, Gorospe EC, et al. Predictive biomarkers for Barrett's esophagus: so near and yet so far. Dis Esophagus. 2013;26:574–81.

    Article  CAS  PubMed  Google Scholar 

  25. Rabinovitch PS, Longton G, Blount PL, et al. Predictors of progression in Barrett's esophagus III: baseline flow cytometric variables. Am J Gastroenterol. 2001;96:3071–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Reid BJ, Prevo LJ, Galipeau PC, et al. Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol. 2001;96:2839–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Reid BJ, Levine DS, Longton G, et al. Predictors of progression to cancer in Barrett's esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol. 2000;95:1669–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Galipeau PC, Li X, Blount PL, et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 2007;4:e67.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bird-Lieberman EL, Dunn JM, Coleman HG, et al. Population-based study reveals new risk-stratification biomarker panel for Barrett's esophagus. Gastroenterology. 2012;143:927-35 e3. This study demonstrates the potential of a clinically applicable biomarker panel for risk stratification in Barrett's esophagus patients using a combination of low grade dysplasia, abnormal ploidy, and Aspergillus oryzae lectin.

    Article  PubMed  Google Scholar 

  30. Murray L, Sedo A, Scott M, et al. TP53 and progression from Barrett's metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut. 2006;55:1390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kaye PV, Haider SA, Ilyas M, et al. Barrett's dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology. 2009;54:699–712.

    Article  PubMed  Google Scholar 

  32. Sikkema M, Kerkhof M, Steyerberg EW, et al. Aneuploidy and overexpression of Ki67 and p53 as markers for neoplastic progression in Barrett's esophagus: a case-control study. Am J Gastroenterol. 2009;104:2673–80.

    Article  CAS  PubMed  Google Scholar 

  33. Kastelein F, Biermann K, Steyerberg EW, et al. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett's oesophagus. Gut. 2013;62:1676–83. This large prospective case-control study of 635 patients showed that p53 protein overexpression or complete loss was associated with neoplastic progression in Barrett's esophagus.

    Article  CAS  PubMed  Google Scholar 

  34. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Song JH, Meltzer SJ. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012;143:35-47 e2.

    PubMed  Google Scholar 

  36. Yang H, Gu J, Wang KK, et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma. Clin Cancer Res. 2009;15:5744–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Saad R, Chen Z, Zhu S, et al. Deciphering the unique microRNA signature in human esophageal adenocarcinoma. PLoS One. 2013;8:e64463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Revilla-Nuin B, Parrilla P, Lozano JJ, et al. Predictive value of MicroRNAs in the progression of barrett esophagus to adenocarcinoma in a long-term follow-up study. Ann Surg. 2013;257:886–93.

    Article  PubMed  Google Scholar 

  39. Garman KS, Owzar K, Hauser ER, et al. MicroRNA expression differentiates squamous epithelium from Barrett's esophagus and esophageal cancer. Dig Dis Sci. 2013;58:3178–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bansal A, Lee IH, Hong X, et al. Discovery and validation of Barrett's esophagus microRNA transcriptome by next generation sequencing. PLoS One. 2013;8:e54240. Using next generation sequencing, this study confirmed differential expression of miRNAs in BE and GERD patients.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. van Baal JW, Verbeek RE, Bus P, et al. microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6. Gut. 2013;62:664–75.

    Article  PubMed  Google Scholar 

  42. Fassan M, Volinia S, Palatini J, et al. MicroRNA expression profiling in human Barrett's carcinogenesis. Int J Cancer. 2011;129:1661–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bus P, Siersema PD, Verbeek RE, et al. Upregulation of miRNA-143, -145, -192, and -194 in esophageal epithelial cells upon acidic bile salt stimulation. Dis Esophagus. 2014;27:591–600.

    Article  CAS  PubMed  Google Scholar 

  44. McQuaid KR, Laine L, Fennerty MB, et al. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther. 2011;34:146–65.

    Article  CAS  PubMed  Google Scholar 

  45. Peng S, Huo X, Rezaei D, et al. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids. Am J Physiol Gastrointest Liver Physiol. 2014;307:G129–39.

    Article  CAS  PubMed  Google Scholar 

  46. Spechler SJ, Souza RF. Barrett's esophagus. N Engl J Med. 2014;371:836–45.

    Article  CAS  PubMed  Google Scholar 

  47. Romero Y, Cameron AJ, Locke 3rd GR, et al. Familial aggregation of gastroesophageal reflux in patients with Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology. 1997;113:1449–56.

    Article  CAS  PubMed  Google Scholar 

  48. Munitiz V, Parrilla P, Ortiz A, et al. High risk of malignancy in familial Barrett's esophagus: presentation of one family. J Clin Gastroenterol. 2008;42:806–9.

    Article  PubMed  Google Scholar 

  49. Levine DM, Ek WE, Zhang R, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nat Genet. 2013;45:1487–93.

    Article  CAS  PubMed  Google Scholar 

  50. Ek WE, Levine DM, D'Amato M, et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett's esophagus, and gastroesophageal reflux. J Natl Cancer Inst. 2013;105:1711–8.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Marur S, D'Souza G, Westra WH, et al. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11:781–9.

    Article  PubMed  Google Scholar 

  52. Syrjanen KJ. HPV infections and oesophageal cancer. J Clin Pathol. 2002;55:721–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Rajendra S, Wang B, Snow ET, et al. Transcriptionally active human papillomavirus is strongly associated with Barrett's dysplasia and esophageal adenocarcinoma. Am J Gastroenterol. 2013;108:1082–93.

    Article  CAS  PubMed  Google Scholar 

  54. Feng S, Zheng J, Du X, et al. Human papillomavirus was not detected by PCR using multiple consensus primer sets in esophageal adenocarcinomas in Chinese patients. J Med Virol. 2013;85:1053–7.

    Article  CAS  PubMed  Google Scholar 

  55. Brankley SM, Wang KK, Harwood AR, et al. The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett's esophagus. J Mol Diagn. 2006;8:260–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Rygiel AM, Milano F, Ten Kate FJ, et al. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett's esophagus. Cancer Epidemiol Biomarkers Prev. 2008;17:1380–5.

    Article  CAS  PubMed  Google Scholar 

  57. Rygiel AM, van Baal JW, Milano F, et al. Efficient automated assessment of genetic abnormalities detected by fluorescence in situ hybridization on brush cytology in a Barrett esophagus surveillance population. Cancer. 2007;109:1980–8.

    Article  CAS  PubMed  Google Scholar 

  58. Timmer MR, Brankley SM, Gorospe EC, et al. Prediction of response to endoscopic therapy of Barrett's dysplasia by using genetic biomarkers. Gastrointest Endosc. 2014;80:984–91.

    Article  PubMed  Google Scholar 

  59. Kadri SR, Lao-Sirieix P, O'Donovan M, et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett's oesophagus in primary care: cohort study. BMJ. 2010;341:c4372.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Benaglia T, Sharples LD, Fitzgerald RC, et al. Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett's esophagus. Gastroenterology. 2013;144:62-73 e6. This study describes an economic model that demonstrated the cost-effectiveness of Cytosponge as a screening modality for Barrett's esophagus in the general population.

    Article  PubMed  Google Scholar 

  61. Peery AF, Hoppo T, Garman KS, et al. Feasibility, safety, acceptability, and yield of office-based, screening transnasal esophagoscopy (with video). Gastrointest Endosc. 2012;75:945-953 e2.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Chak A, Alashkar BM, Isenberg GA, et al. Comparative acceptability of transnasal esophagoscopy and esophageal capsule esophagoscopy: a randomized, controlled trial in veterans. Gastrointest Endosc. 2014;80:774–82.

    Article  PubMed  Google Scholar 

  63. Gora MJ, Sauk JS, Carruth RW, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med. 2013;19:238–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Qumseya BJ, Wang H, Badie N, et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett's esophagus: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2013;11:1562-70 e1-2.

    PubMed Central  PubMed  Google Scholar 

  65. Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62:15–21.

    Article  PubMed  Google Scholar 

  66. Phoa KN, Pouw RE, van Vilsteren FG, et al. Remission of Barrett's esophagus with early neoplasia 5 years after radiofrequency ablation with endoscopic resection: a Netherlands cohort study. Gastroenterology. 2013;145:96–104.

    Article  PubMed  Google Scholar 

  67. Canto MI, Anandasabapathy S, Brugge W, et al. In vivo endomicroscopy improves detection of Barrett's esophagus-related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest Endosc. 2014;79:211–21.

    Article  PubMed  Google Scholar 

  68. Sharma P, Savides TJ, Canto MI, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on imaging in Barrett's Esophagus. Gastrointest Endosc. 2012;76:252–4.

    Article  PubMed  Google Scholar 

  69. Sturm MB, Joshi BP, Lu S, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med. 2013;5:184ra61.

    Article  PubMed  Google Scholar 

  70. Bird-Lieberman EL, Neves AA, Lao-Sirieix P, et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat Med. 2012;18:315–21. This study describes a novel molecular imaging technique using fluorescent lectins that may allow endoscopic identification of dysplasia in Barrett's esophagus and potentially improving efficiency of our current surveillance practices.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Meghan Jankowski declares that she has no conflict of interest.

Sachin Wani is supported by the American Gastroenterological Association Takeda Research Scholar Award in GERD and Barrett’s esophagus and University of Colorado Department of Medicine Early Scholars Award. Dr. Wani has also received a grant from Covidien.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Wani MD.

Additional information

This article is part of the Topical Collection on Esophagus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankowski, M., Wani, S. Diagnostic and Management Implications of Basic Science Advances in Barrett’s Esophagus. Curr Treat Options Gastro 13, 16–29 (2015). https://doi.org/10.1007/s11938-014-0040-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-014-0040-9

Keywords

Navigation