Skip to main content
Log in

Bioresorbable Polymers and Stent Devices

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Percutaneous coronary interventions will never become obsolete, as evolution is inherent to interventional cardiology. Current drug-eluting platforms have appreciably improved their safety and efficacy profiles in different clinical settings compared to first-generation devices such that it is difficult to consider other alternatives. However, there is definite biological plausibility to consider devices with bioabsorbable polymers and/or scaffolds. It is also an undeniable fact that many patients, based on variety of belief systems, would prefer not to have a permanently implanted device. BP DES with or without bioresorbable scaffolds offer advantages over durable polymer DES in restoring normal coronary physiology and vascular adaptive responses, resulting in late lumen gain and plaque regression. They will likely allow flexibility in treating complex CAD. However, so far, we have been able to prove non-inferiority in a selected population of patients without long-term data. Is “as good as” good enough? Are we ready to reach for the BRS or a BP DES in our catheterization laboratory based on preclinical and mechanistic data (endothelialization, OCT imaging, vasomotion) with limited human experience? I am not. While I will maximize my efforts to recruit patients in related randomized controlled trials, the technology is not ready for prime time. Randomized controlled trials are needed to determine whether any or all of these devices improve long-term outcome compared to best in class DP DES. Most definitive evidence is likely about a decade away. Until then, we can learn to be disciplined implanters not only in selecting the appropriate patient but also in perfecting implantation techniques

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARC:

Academic Research Consortium

BA:

Balloon angioplasty

BMS:

Bare metal stent

BRS:

Bioresorbable scaffold

BP:

Bioabsorbable polymer

CAD:

Coronary artery disease

DAPT:

Dual anti-platelet therapy

BVS:

Abbott Vascular-poly-l -lactic acid (PLLA)-based absorb bioresorbable vascular scaffold

DP:

Durable polymer

DP-CoCr-EES:

Durable polymer cobalt-chromium everolimus-eluting stent(s) - (Xience V and Promus, Boston Scientific Corp., Natick, Massachusetts)

DP-PtCR-EES:

Durable polymer, platinum chromium everolimus-eluting stents (Promus Element, Boston Scientific Corp., Natick, Massachusetts)

BP -PtCR-EES:

Bioabsorbable polymer, platinum chromium everolimus-eluting stents SYERGY, (Boston Scientific Corp., Natick, Massachusetts)

DP CoCr-ZES:

Durable polymer cobalt-chromium zotarolimus eluting stents

IVUS:

Intravascular ultrasonography

LST:

Late stent thrombosis

OCT:

Optical coherence tomography

PVDF-HFP:

Polyvinylidene fluoride-co-hexafluoropropene

PCI:

Percutaneous coronary intervention

SES:

Sirolimus-eluting stents

ST:

Stent thrombosis

TLF:

Target lesion failure

VLST:

Very late stent thrombosis

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bangalore S, Kumar S, Fusaro M, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation. 2012;125:2873–91.

    Article  CAS  PubMed  Google Scholar 

  2. Windecker S, Stortecky S, Stefanini GG, et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ. 2014;348:g3859.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Otsuka F, Pacheco E, Perkins LE, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330–42.

    Article  CAS  PubMed  Google Scholar 

  4. Palmerini T, Benedetto U, Biondi-Zoccai G, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.

    Article  CAS  PubMed  Google Scholar 

  5. • Iqbal J, Serruys PW, Silber S, et al. Comparison of zotarolimus- and everolimus-eluting coronary stents: final 5-year report of the RESOLUTE all-comers trial. Circ Cardiovasc Interv. 2015;8, e002230. This study highlights that 1 in 5 patients with best in classs 2nd generation dug eluting stents will, within 5 years of follow up, have a MACE.

    Article  PubMed  Google Scholar 

  6. Farooq V, Serruys PW, Zhang Y, et al. Short-term and long-term clinical impact of stent thrombosis and graft occlusion in the SYNTAX trial at 5 years: synergy between percutaneous coronary intervention with taxus and cardiac surgery trial. J Am Coll Cardiol. 2013;62:2360–9.

    Article  PubMed  Google Scholar 

  7. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Article  CAS  PubMed  Google Scholar 

  8. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  9. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  10. Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123:1400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otsuka F, Yahagi K, Ladich E, et al. Hypersensitivity reaction in the US Food and Drug Administration-approved second-generation drug-eluting stents: histopathological assessment with ex vivo optical coherence tomography. Circulation. 2015;131:322–4.

    Article  PubMed  Google Scholar 

  12. Lagerqvist B, Carlsson J, Frobert O, et al. Stent thrombosis in Sweden: a report from the Swedish coronary angiography and angioplasty registry. Circ Cardiovasc Interv. 2009;2:401–8.

    Article  PubMed  Google Scholar 

  13. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.

    Article  PubMed  Google Scholar 

  14. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.

    Article  PubMed  Google Scholar 

  15. Raber L, Wohlwend L, Wigger M, et al. Five-year clinical and angiographic outcomes of a randomized comparison of sirolimus-eluting and paclitaxel-eluting stents: results of the sirolimus-eluting versus paclitaxel-eluting stents for coronary revascularization LATE trial. Circulation. 2011;123:2819–28. 6 p following 28.

    Article  PubMed  Google Scholar 

  16. Raber L, Kelbaek H, Ostojic M, et al. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction: the COMFORTABLE AMI randomized trial. JAMA : J Am Med Assoc. 2012;308:777–87.

    Article  CAS  Google Scholar 

  17. Palmerini T, Biondi-Zoccai G, Della Riva D, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet. 2012;379:1393–402.

    Article  CAS  PubMed  Google Scholar 

  18. Bangalore S, Toklu B, Amoroso N, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ. 2013;347:f6625.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raber L, Magro M, Stefanini GG, et al. Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation. 2012;125:1110–21.

    Article  PubMed  Google Scholar 

  20. Sarno G, Lagerqvist B, Frobert O, et al. Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish coronary angiography and angioplasty registry (SCAAR). Eur Heart J. 2012;33:606–13.

    Article  PubMed  Google Scholar 

  21. Sabate M, Cequier A, Iniguez A, et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet. 2012;380:1482–90.

    Article  CAS  PubMed  Google Scholar 

  22. Van Dyck CJ, Hoymans VY, Bult H, et al. Resolute and Xience V polymer-based drug-eluting stents compared in an atherosclerotic rabbit double injury model. Catheter Cardiovasc Interv : Off J Soc Cardiac Angiography Interv. 2013;81:E259–E268

  23. Joner M, Nakazawa G, Finn AV, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52:333–42.

    Article  CAS  PubMed  Google Scholar 

  24. Windecker S, Serruys PW, Wandel S, et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet. 2008;372:1163–73.

    Article  CAS  PubMed  Google Scholar 

  25. Byrne RA, Kastrati A, Kufner S, et al. Randomized, non-inferiority trial of three limus agent-eluting stents with different polymer coatings: the intracoronary stenting and angiographic results: test efficacy of 3 limus-eluting stents (ISAR-TEST-4) trial. Eur Heart J. 2009;30:2441–9.

    Article  PubMed  Google Scholar 

  26. Smits PC, Hofma S, Togni M, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. Lancet. 2013;381:651–60.

    Article  CAS  PubMed  Google Scholar 

  27. Natsuaki M, Kozuma K, Morimoto T, et al. Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial. J Am Coll Cardiol. 2013;62:181–90.

    Article  CAS  PubMed  Google Scholar 

  28. Pilgrim T, Heg D, Roffi M, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial. Lancet. 2014;384:2111–22.

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser C, Galatius S, Jeger R, et al. Long-term efficacy and safety of biodegradable-polymer biolimus-eluting stents: main results of the Basel stent kosten-effektivitats trial-PROspective validation examination II (BASKET-PROVE II), a randomized, controlled noninferiority 2-year outcome trial. Circulation. 2015;131:74–81.

    Article  CAS  PubMed  Google Scholar 

  30. Raungaard B, Jensen LO, Tilsted HH, et al. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI): a randomised non-inferiority trial. Lancet. 2015;385:1527–35.

    Article  CAS  PubMed  Google Scholar 

  31. Saito S, Valdes-Chavarri M, Richardt G, et al. A randomized, prospective, intercontinental evaluation of a bioresorbable polymer sirolimus-eluting coronary stent system: the CENTURY II (Clinical Evaluation of New Terumo Drug-Eluting Coronary Stent System in the Treatment of Patients with Coronary Artery Disease) trial. Eur Heart J. 2014;35:2021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Kereiakes DJ, Meredith IT, Windecker S, et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: the EVOLVE II Randomized Trial. Circ Cardiovasc Intervent. 2015;8. Data from EVOLVE II trial led to FDA approval of the first bioabsorbable polymer-coated DES in the US with similar 1 year TLR rates to best in class DES.

  33. Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J. 2012;33:1214–22.

    Article  CAS  PubMed  Google Scholar 

  34. Windecker S, Haude M, Neumann FJ, et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv. 2015;8, e001441.

    Article  CAS  PubMed  Google Scholar 

  35. de Waha A, Stefanini GG, King LA, et al. Long-term outcomes of biodegradable polymer versus durable polymer drug-eluting stents in patients with diabetes a pooled analysis of individual patient data from 3 randomized trials. Int J Cardiol. 2013;168:5162–6.

    Article  PubMed  Google Scholar 

  36. Eppihimer MJ, Sushkova N, Grimsby JL, et al. Impact of stent surface on thrombogenicity and vascular healing: a comparative analysis of metallic and polymeric surfaces. Circ Cardiovasc Interv. 2013;6:370–7.

    Article  CAS  PubMed  Google Scholar 

  37. Meredith IT, Verheye S, Dubois CL, et al. Primary endpoint results of the EVOLVE trial: a randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent. J Am Coll Cardiol. 2012;59:1362–70.

    Article  CAS  PubMed  Google Scholar 

  38. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation. 1988;77:361–71.

    Article  CAS  PubMed  Google Scholar 

  39. Rathore S, Terashima M, Suzuki T. Late-acquired stent malapposition after sirolimus-eluting stent implantation following acute coronary syndrome: angiographic, IVUS, OCT and coronary angioscopic observation. J Invasive Cardiol. 2009;21:666–7.

    PubMed  Google Scholar 

  40. Brodie BR, Pokharel Y, Garg A, et al. Very late hazard with stenting versus balloon angioplasty for ST-elevation myocardial infarction: a 16-year single-center experience. J Interv Cardiol. 2014;27:21–8.

    Article  PubMed  Google Scholar 

  41. Yamaji K, Kimura T, Morimoto T, et al. Very long-term (15 to 23 years) outcomes of successful balloon angioplasty compared with bare metal coronary stenting. J Am Heart Assoc. 2012;1, e004085.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lane JP, Perkins LE, Sheehy AJ, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. JACC Cardiovasc Interv. 2014;7:688–95.

    Article  PubMed  Google Scholar 

  43. Gogas BD, King 3rd SB, Samady H. Bioresorbable polymeric scaffolds for coronary revascularization: Lessons learnt from ABSORB III, ABSORB China, and ABSORB Japan. Glob Cardiol Sci Pract. 2015;2015:62.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tanaka A, Ruparelia N, Kawamoto H, Latib A, Colombo A. Positive vessel remodeling and appearance of pulsatile wall motion at long-term follow-up after bioresorbable scaffold implantation in a chronic total occlusion. JACC Cardiovasc Interv. 2015;8:1635–7.

    Article  PubMed  Google Scholar 

  45. Serruys PW, Onuma Y, Garcia-Garcia HM, et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention : J EuroPCR Collab Work Group Interv Cardiol Eur Soc Cardiol. 2014;9:1271–84.

    Article  Google Scholar 

  46. Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387:31–9.

    Article  CAS  PubMed  Google Scholar 

  47. Serruys PW, Ormiston J, van Geuns RJ, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up. J Am Coll Cardiol. 2016;67:766–76.

    Article  CAS  PubMed  Google Scholar 

  48. Karanasos A, Simsek C, Gnanadesigan M, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol. 2014;64:2343–56.

    Article  PubMed  Google Scholar 

  49. Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis. 2012;221:106–12.

    Article  CAS  PubMed  Google Scholar 

  50. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123:779–97.

    Article  PubMed  Google Scholar 

  51. •• Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373:1905–15. Landmark study of the ABSORB stent, the first bioresorbable vascular scaffold that got FDA approval, which showed, compared to Xience stent, similar target lesion failure rates at 1 year in patients with noncomplex obstructive CAD.

    Article  CAS  PubMed  Google Scholar 

  52. Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the absorb Bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387:1277–89.

    Article  CAS  PubMed  Google Scholar 

  53. Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385:43–54.

    Article  CAS  PubMed  Google Scholar 

  54. Puricel S, Arroyo D, Corpataux N, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015;65:791–801.

    Article  CAS  PubMed  Google Scholar 

  55. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention : J EuroPCR Collab Work Group Interv Cardiol Eur Soc Cardiol. 2015;10:1144–53.

    Article  Google Scholar 

  56. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67:921–31.

    Article  PubMed  Google Scholar 

  57. Kraak RP, Hassell ME, Grundeken MJ, et al. Initial experience and clinical evaluation of the absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC single centre real world PCI registry. EuroIntervention : J EuroPCR Collab Work Group Interv Cardiol Eur Soc Cardiol. 2015;10:1160–8.

    Article  Google Scholar 

  58. Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387:537–44.

    Article  CAS  PubMed  Google Scholar 

  59. Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2016;9:12–24.

    Article  PubMed  Google Scholar 

  60. Rizik DG, Hermiller JB, Kereiakes DJ. The ABSORB Bioresorbable vascular scaffold: a novel, fully resorbable drug-eluting stent: current concepts and overview of clinical evidence. Catheter Cardiovasc Interv : Off J Soc Cardiac Angiography Interv. 2015;86:664–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Dehghani MD FRCPC.

Ethics declarations

Conflict of Interest

Payam Dehghani declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, P. Bioresorbable Polymers and Stent Devices. Curr Treat Options Cardio Med 19, 12 (2017). https://doi.org/10.1007/s11936-017-0510-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0510-1

Keywords

Navigation