Skip to main content

Advertisement

Log in

Childhood Obesity and Autonomic Dysfunction: Risk for Cardiac Morbidity and Mortality

  • Pediatric Congenital Heart Disease (G Singh, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The epidemic of childhood obesity is becoming a major predictor for risk of cardiovascular diseases (CVD) and mortality during adulthood. Alterations in the morphology of the heart due to obesity could be a predictor for the dysfunction of cardiac autonomic modulation (CAM). A number of epidemiologic studies have evaluated the effect of obesity and CAM in children, finding that obesity impaired the balance of CAM toward a sympathetic overflow and reduced parasympathetic modulation, a significant predictor of CVD morbidity and mortality in adults. Lifestyle modifications, for example long-term exercise programs, have been shown to improve CAM in the obese. This review discusses the recent evidence on childhood and adolescent obesity and its impact on CAM, as well as how early lifestyle changes could help improve CAM, which may in turn reduce the burden of CVD in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. World Health Organization. Global strategy on diet, physical activity, and health: childhood overweight and obesity. Available at: http://www.who.int/dietphysicalactivity/childhood/en/. Accessed 8 Apr 2014.

  2. de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92:1257–64.

    Article  PubMed  Google Scholar 

  3. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90.

    Article  PubMed  Google Scholar 

  4. Li S, Chen W, Srinivasan SR, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290:2271–6.

    Article  PubMed  CAS  Google Scholar 

  5. Juonala M, Magnussen CG, Berenson GS, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365:1876–85.

    Article  PubMed  CAS  Google Scholar 

  6. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR. Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr. 2011;158:709–14.

    Article  PubMed  Google Scholar 

  7. Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L. Adolescent overweight and future adult coronary heart disease. N Engl J Med. 2007;357:2371–9.

    Article  PubMed  CAS  Google Scholar 

  8. Mehta SK, Richards N, Lorber R, Rosenthal GL. Abdominal obesity, waist circumference, body mass index, and echocardiographic measures in children and adolescents. Congenit Heart Dis. 2009;4:338–47.

    Article  PubMed  Google Scholar 

  9. Koopman LP, McCrindle BW, Slorach C, et al. Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr. 2012;25:401–10.

    Article  PubMed  Google Scholar 

  10. Ozdemir O, Hizli S, Abaci A, Agladioglu K, Aksoy S. Echocardiographic measurement of epicardial adipose tissue in obese children. Pediatr Cardiol. 2010;31:853–60.

    Article  PubMed  Google Scholar 

  11. Atabek ME, Akyuz E, Selver Eklioglu B, Cimen D. The relationship between metabolic syndrome and left ventricular mass index in obese children. J Clin Res Pediatr Endocrinol. 2011;3:132–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35(7):891–8.

    Article  CAS  Google Scholar 

  13. Franks PW, Hanson RL, Knowler WC, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62(15):1309–19. Recap of resent research on cardiovascular abnormalities in children with obesity.

    Article  PubMed  Google Scholar 

  15. Vanderlei LC, Pastre CM, Freitas Jr IF, Godoy MF. Analysis of cardiac autonomic modulation in obese and eutrophic children. Clinics. 2010;65:789–92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dangardt F, Volkmann R, Chen Y, Osika W, Marild S, Friberg P. Reduced cardiac vagal activity in obese children and adolescents. Clin Physiol Funct Imaging. 2011;31:108–13.

    PubMed  Google Scholar 

  17. Rodríguez-Colón SM, Bixler EO, Li X, Vgontzas AN, Liao D. Obesity is associated with impaired cardiac autonomic modulation in children. Int J Pediatr Obes. 2011;6:128–34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baum P, Petroff D, Classen J, Kiess W, Blüher S. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study. PLoS One. 2013. doi:10.1371/journal.pone.0054546.

    Google Scholar 

  19. Birch SL, Duncan MJ, Franklin C. Overweight and reduced heart rate variability in British children: an exploratory study. Prev Med. 2012;55(5):430–2.

    Article  PubMed  Google Scholar 

  20. Taşçılar ME, Yokuşoğlu M, Boyraz M, Baysan O, Köz C, Dündaröz R. Cardiac autonomic functions in obese children. J Clin Res Pediatr Endocrinol. 2011;3(2):60–4.

    PubMed  PubMed Central  Google Scholar 

  21. Soares-Miranda L, Alves AJ, Vale S, et al. Central fat influences cardiac autonomic function in obese and overweight girls. Pediatr Cardiol. 2011;32(7):924–8.

    Article  PubMed  Google Scholar 

  22. Vanderlei LC, Pastre CM, Freitas Jr IF, Godoy MF. Geometric indexes of heart rate variability in obese and eutrophic children. Arq Bras Cardiol. 2010;95(1):35–40.

    Article  PubMed  Google Scholar 

  23. Rabbone I, Bobbio A, Rabbia F, Bertello MC, Ignaccoldo MG, Saglio E, et al. Early cardiovascular autonomic dysfunction, beta cell function and insulin resistance in obese adolescents. Acta Biomed. 2009;80(1):29–35.

    PubMed  CAS  Google Scholar 

  24. Kaufman CL, Kaiser DR, Steinberger J, Dengel DR. Relationships between heart rate variability, vascular function, and adiposity in children. Clin Auton Res. 2007;17(3):165–71.

    Article  PubMed  Google Scholar 

  25. Rabbia F, Silke B, Conterno A, et al. Assessment of cardiac autonomic modulation during adolescent obesity. Obes Res. 2003;11(4):541–8.

    Article  PubMed  Google Scholar 

  26. Latchman PL, Mathur M, Bartels MN, Axtell RS, De Meersman RE. Impaired autonomic function in normotensive obese children. Clin Auton Res. 2011;21(5):319–23.

    Article  PubMed  Google Scholar 

  27. Lucini D, de Giacomi G, Tosi F, Malacarne M, Respizzi S, Pagani M. Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart. 2013;99(6):376–81.

    Article  PubMed  Google Scholar 

  28. Paschoal MA, Trevizan PF, Scodeler NF. Heart rate variability, blood lipids and physical capacity of obese and non-obese children. Arq Bras Cardiol. 2009;93(3):239–46.

    Article  PubMed  Google Scholar 

  29. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6:318–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Grassi G, Quarti-Trevano F, Seravalle G, Dell’Oro R. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2007;17:473–81.

    Article  PubMed  CAS  Google Scholar 

  31. Malliani A, Pagani M, Montano N, Mela GS. Sympatho vagal balance: areap-praisal. Circulation. 1998;98:2640–3.

    Article  PubMed  CAS  Google Scholar 

  32. Paton JF, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiacauto-nomic control: vago-sympathetic interactions revisited. Brain Res Rev. 2005;49:555–65.

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein DS, McCarty R, Polinsky RJ, Kopin IJ. Relationship between plasman or epinephrine and sympathetic neural activity. Hypertension. 1983;5:552–9.

    Article  PubMed  CAS  Google Scholar 

  34. Esler M. Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol. 1993;73:243–53.

    Article  PubMed  CAS  Google Scholar 

  35. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.

    PubMed  CAS  Google Scholar 

  36. Hyndman BW, Kitney RI, Sayers BM. Spontaneous rhythms in physiological control systems. Nature. 1971;233:339–41.

    Article  PubMed  CAS  Google Scholar 

  37. Kleiger RE, Stein PK, Bigger JT. Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol. 2005;10:88–101.

    Article  PubMed  Google Scholar 

  38. Billman GE. Heart rate variability a historical perspective. Front Physiol. 2011;2:86.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thayler JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–31.

    Article  Google Scholar 

  40. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  PubMed  CAS  Google Scholar 

  41. Otzenberger H, Gronfier C, Simon C, et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol. 1998;275(3):946–50.

    Google Scholar 

  42. Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. Aging and the complexity of cardiovascular dynamics. Biophys J. 1991;59:945–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Malpas SC, Purdie GL. Circadian variation of heart rate variability. Cardiovasc Res. 1990;24:210–3.

    Article  PubMed  CAS  Google Scholar 

  44. Li X, Shaffer ML, Rodríguez-Colón SM, et al. Systemic inflammation and circadian rhythm of cardiac autonomic modulation. Auton Neurosci. 2011;162(1–2):72–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodríguez-Colón SM, Li X, Shaffer ML, et al. Insulin resistance and circadian rhythm of cardiac autonomic modulation. Cardiovasc Diabetol. 2010;6(9):85.

    Article  Google Scholar 

  46. Kardelen F, Akcurin G, Ertug H, Akcurin S, Bircan I. Heart rate variability and circadian variations in type 1 diabetes mellitus. Pediatr Diabetes. 2006;7:45–50.

    Article  PubMed  Google Scholar 

  47. Li X, Shaffer ML, Rodríguez-Colón S, et al. The circadian pattern of cardiac autonomic modulation in a middle-aged population. Clin Auton Res. 2011;21(3):143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Massin MM, Maeyns K, Withofs N, Ravet F, Gerard P. Circadian rhythm of heart rate and heart rate variability. Arch Dis Child. 2000;83:179–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Bilan A, Witczak A, Palusiński R, Myśliński W, Hanzlik J. Circadian rhythm of spectral indices of heart rate variability in healthy subjects. J Electrocardiol. 2005;38(3):239–43.

    Article  PubMed  Google Scholar 

  50. Gutin B, Barbeau P, Litaker MS, Ferguson M, Owens S. Heart rate variability in obese children: relations to total body and visceral adiposity, and changes with physical training and detraining. Obes Res. 2000;8(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  51. Barlow SE, Expert Committee. Expert Committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(4):164–92.

    Article  Google Scholar 

  52. Raj M. Obesity and cardiovascular risk in children and adolescents. Indian J Endocrinol Metab. 2012;16(1):13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Despres JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. Br Med J. 2001;322:716–20.

    Article  CAS  Google Scholar 

  54. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321:225–36.

    Article  PubMed  CAS  Google Scholar 

  55. Dekker JM, Crow RS, Folsom AR, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atheroscler Risk Commun Circ. 2000;102:1239–44.

    CAS  Google Scholar 

  56. Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol. 2007;74:224–42.

    Article  PubMed  Google Scholar 

  57. Lazarova Z, Tonhajzerova I, Trunkvalterova Z, et al. Baroreflex sensitivity is reduced in obese normotensive children and adolescents. Can J Physiol Pharmacol. 2009;87:565–71.

    Article  PubMed  CAS  Google Scholar 

  58. Riva P, Martini G, Rabbia F, et al. Obesity and autonomic function in adolescence. Clin Exp Hypertens. 2001;23(1–2):57–67.

    Article  PubMed  CAS  Google Scholar 

  59. Guízar JM, Ahuatzin R, Amador N, Sánchez G, Romer G. Heart autonomic function in overweight adolescents. Indian Pediatr. 2005;42(5):464–9.

    PubMed  Google Scholar 

  60. Nagai N, Moritani T. Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord. 2004;28(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  61. Faulkner MS, Hathaway D, Tolley B. Cardiovascular autonomic function in healthy adolescents. Heart Lung. 2003;32(1):10–22.

    Article  PubMed  Google Scholar 

  62. Soares-Miranda L, Sandercock G, Vale S, et al. Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes Metab Res Rev. 2012;28(4):363–9. They demonstrated that increasing in central fat, measured dual-energy X-ray absorptiometry, is associated with impairment of CAM in overweight and obese children.

    Article  PubMed  CAS  Google Scholar 

  63. Gui-Ling X, Jing-Hua W, Yan Z, Hui X, Jing-Hui S, Si-Rui Y. Association of high blood pressure with heart rate variability in children. Iran J Pediatr. 2013;23(1):37–44.

    PubMed  Google Scholar 

  64. Fitzgibbon LK, Coverdale NS, Phillips AA, et al. The association between baroreflex sensitivity and blood pressure in children. Appl Physiol Nutr Metab. 2012;37(2):301–7.

    Article  PubMed  Google Scholar 

  65. Pankova NB, Alchinova IB, Afanas'eva EV, Karganov MI. Functional characteristics of cardiovascular system in adolescents with prehypertension. Fiziol Cheloveka. 2010;36(3):82–9.

    PubMed  CAS  Google Scholar 

  66. Barton M. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. Pediatrics. 2010;125:361–7.

    Article  PubMed  Google Scholar 

  67. Center for Disease Control and Prevention. Division of Nutrition, Physical Activity, and Obesity. How much physical activity do children need? Available at: http://www.cdc.gov/physicalactivity/everyone/guidelines/children.html. Accessed 8 Apr 2014.

  68. Gamelin FX, Baquet G, Berthoin S, et al. Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol. 2009;105(5):731–8.

    Article  PubMed  Google Scholar 

  69. Leicht AS, Allen GD. Moderate-term reproducibility of heart rate variability during rest and light to moderate exercise in children. Braz J Med Biol Res. 2008;41(7):627–33.

    Article  PubMed  CAS  Google Scholar 

  70. Buchheit M, Platat C, Oujaa M, Simon C. Habitual physical activity, physical fitness and heart rate variability in preadolescents. Int J Sports Med. 2007;28(3):204–10.

    Article  PubMed  CAS  Google Scholar 

  71. Vinet A, Beck L, Nottin S, Obert P. Effect of intensive training on heart rate variability in prepubertal swimmers. Eur J Clin Invest. 2005;35(10):610–4.

    Article  PubMed  CAS  Google Scholar 

  72. Nagai N, Hamada T, Kimura T, Moritani T. Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Childs Nerv Syst. 2004;20(4):209–14.

    Article  PubMed  Google Scholar 

  73. Mandigout S, Melin A, Fauchier L, N'Guyen LD, Courteix D, Obert P. Physical training increases heart rate variability in healthy prepubertal children. Eur J Clin Invest. 2002;32(7):479–87.

    Article  PubMed  CAS  Google Scholar 

  74. Gutin B, Howe C, Johnson MH, Humphries MC, Snieder H, Barbeau P. Heart rate variability in adolescents: relations to physical activity, fitness, and adiposity. Med Sci Sports Exerc. 2005;37(11):1856–63.

    Article  PubMed  Google Scholar 

  75. Triposkiadis F, Ghiokas S, Skoularigis I, Kotsakis A, Giannakoulis I, Thanopoulos V. Cardiac adaptation to intensive training in prepubertal swimmers. Eur J Clin Invest. 2002;32:16–23.

    Article  PubMed  CAS  Google Scholar 

  76. Farah BQ, Ritti-Dias RM, Balagopal PB, Hill JO, Prado WL. Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatr Obes. 2014;9(2):111–20. An intervention trial in obese adolescents, demonstrating that high-intensity exercise training can enhance HRV, therefore improving CAM.

    Article  PubMed  CAS  Google Scholar 

  77. Gutin B, Owens S, Slavens G, Riggs S, Treiber F. Effect of physical training on heart-period variability in obese children. J Pediatr. 1997;130(6):938–43.

    Article  PubMed  CAS  Google Scholar 

  78. Lichtenstein AH, Appel LJ, Brands M, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96.

    Article  PubMed  Google Scholar 

  79. Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol. 2004;160:1223–33.

    Article  PubMed  Google Scholar 

  80. Bazzano LA, He J, Ogden LG, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr. 2002;76:93–9.

    PubMed  CAS  Google Scholar 

  81. Knekt P, Ritz J, Pereira MA, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80:1508–20.

    PubMed  CAS  Google Scholar 

  82. Voutilainen S, Nurmi T, Mursu J, Rissanen TH. Carotenoids and cardiovascular health. Am J Clin Nutr. 2006;83:1265–71.

    PubMed  CAS  Google Scholar 

  83. Park SK, Tucker KL, O'Neill MS, et al. Fruit, vegetable, and fish consumption and heart rate variability: the Veterans Administration Normative Aging Study. Am J Clin Nutr. 2009;89(3):778–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. De Jonge L, Moreira EA, Martin CK, Ravussin E, Pennington CALERIE Team. Impact of 6-month caloric restriction on autonomic nervous system activity in healthy, overweight, individuals. Obesity. 2010;18(2):414–6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dietrich DF, Schindler C, Schwartz J, et al. Heart rate variability in an aging population and it association with lifestyle and cardiovascular risk factors: results of the SAPALDIA study. Europace. 2006;8:521–9.

    Article  Google Scholar 

  86. Akehi Y, Yoshimatsu H, Kurokawa M, et al. VLCD-induced weight loss improves heart rate variability in moderately obese Japanese. Exp Biol Med. 2001;226(5):440–5.

    CAS  Google Scholar 

  87. Ito H, Ohshima A, Tsuzuki M, Ohto N, et al. Effects of increased physical activity and mild calorie restriction on heart rate variability in obese women. Jpn Heart J. 2001;42(4):459–69.

    Article  PubMed  CAS  Google Scholar 

  88. Poirier P, Hernandez TL, Weil KM, Shepard TJ, Eckel RH. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes Res. 2003;11(9):1040–7.

  89. Pivik RT, Dykman RA. Cardiovascular effects of morning nutrition in preadolescents. Physiol Behav. 2004;82(2–3):295–302.

    Article  PubMed  CAS  Google Scholar 

  90. Liao D, Cai J, Barnes RW, et al. Cardiac autonomic function and the development of hypertension—The ARIC Study. Am J Hypertens. 1996;9:1147–56.

    Article  PubMed  CAS  Google Scholar 

  91. Liao D, Cai J, Rosamond W, et al. Cardiac autonomic function and incident CHD: a population based case-cohort study—The ARIC Study. Am J Epidemiol. 1997;145:696–706.

    Article  PubMed  CAS  Google Scholar 

  92. Liao D, Sloan RP, Cascio WE, et al. The multiple metabolic syndrome is associated with lower heart rate variability—ARIC Study. Diabetes Care. 1998;21:2116–22.

    Article  PubMed  CAS  Google Scholar 

  93. Dekker JM, Crow RS, Folsom AR, et al. Low heart rate variability in a two minute rhythm strip predicts risk of coronary heart disease and mortality from several causes—The ARIC Study. Circulation. 2000;102:1239–44.

    Article  PubMed  CAS  Google Scholar 

  94. Liao D, Carnethon MR, Evans GW, Cascio WE, Heiss G. Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes—The ARIC Study. Diabetes. 2002;51:3524–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Institutes of Health (NIH) grants: 1 R01 HL 097165, R01 HL63772, R21HL087858, and the Penn State CTSI Grant UL Tr000127. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Compliance with Ethics Guidelines

Conflict of Interest Dr. Duanping Liao, Dr. Sol M. Rodríguez-Colón, Dr. Fan He, and Dr. Edward O. Bixler each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanping Liao MD, PhD.

Additional information

This article is part of the Topical Collection on Pediatric Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, D., Rodríguez-Colón, S.M., He, F. et al. Childhood Obesity and Autonomic Dysfunction: Risk for Cardiac Morbidity and Mortality. Curr Treat Options Cardio Med 16, 342 (2014). https://doi.org/10.1007/s11936-014-0342-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-014-0342-1

Keywords

Navigation