Skip to main content

Advertisement

Log in

Bone Homeostasis and Repair: Forced Into Shape

  • Osteoarthritis (MB Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Mechanical loading is a potent anabolic regulator of bone mass, and the first line of defense for bone loss is weight-bearing exercise. Likewise, protected weight bearing is the first prescribed physical therapy following orthopedic reconstructive surgery. In both cases, enhancement of new bone formation is the goal. Our understanding of the physical cues, mechanisms of force sensation, and the subsequent cellular response will help identify novel physical and therapeutic treatments for age- and disuse-related bone loss, delayed- and nonunion fractures, and significant bony defects. This review highlights important new insights into the principles and mechanisms governing mechanical adaptation of the skeleton during homeostasis and repair and ends with a summary of clinical implications stemming from our current understanding of how bone adapts to biophysical force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.

    Article  CAS  PubMed  Google Scholar 

  2. Gunter K, Baxter-Jones AD, Mirwald RL, Almstedt H, Fuchs RK, Durski S, et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res. 2008;23:986–93.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42. This study demonstrates that half of the benefit in bone size and one-third of the benefit in bone strength resulting from physical activity during youth are maintained throughout life.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wolff J. The classic on the inner architecture of bones and its importance for bone growth (reprinted from Virchows Arch Pathol Anat Physiol, vol 50, pg 389–450, 1870). Clin Orthop Relat Res. 2010;468:1056–65.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Xing W, Baylink D, Kesavan C, Hu Y, Kapoor S, Chadwick RB, et al. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice. J Cell Biochem. 2005;96:1049–60.

    Article  CAS  PubMed  Google Scholar 

  6. Zaman G, Saxon LK, Sunters A, Hilton H, Underhill P, Williams D, et al. Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor alpha and disuse. Bone. 2010;46:628–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mantila Roosa SM, Liu Y, Turner CH. Gene expression patterns in bone following mechanical loading. J Bone Miner Res. 2011;26:100–12.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 2010;12:369–400.

    Article  CAS  PubMed  Google Scholar 

  9. Baker AH. Non-union in fractures. Ulster Med J. 1934;3:277–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg (Br). 1985;67:650–5.

    CAS  Google Scholar 

  11. Currey JD: Bones. Princeton University Press, 2013.

  12. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res. 1991;9:465–76.

    Article  CAS  PubMed  Google Scholar 

  14. Frey SP, Jansen H, Doht S, Filgueira L, Zellweger R. Immunohistochemical and molecular characterization of the human periosteum. Sci World J. 2013;2013:341078–8.

    Article  Google Scholar 

  15. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis OJ. The blood supply of developing long bones with special reference to the metaphyses. J Bone Joint Surg (Br). 1956;38:928–33.

    Google Scholar 

  17. Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol. 2012;8:529–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.

    Article  CAS  PubMed  Google Scholar 

  19. Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep. 2010;8:98–104.

    Article  PubMed  Google Scholar 

  20. Trüssel A, Müller R, Webster D. Toward mechanical systems biology in bone. Ann Biomed Eng. 2012;40:2475–87.

    Article  PubMed  Google Scholar 

  21. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    Article  CAS  PubMed  Google Scholar 

  22. Price JS, Lanyon LE: The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone. Front Endocrinol. 2014;5:154.

  23. Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 2004;74:3–15.

    PubMed  Google Scholar 

  24. Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH: Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.

  25. Warden SJ, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Petit MA, Hughes JM: Exercise prescription for people with osteoporosis. In: ACSM’s resource manual for guidleines for exercise testing and prescription. Baltimore, MD: Lippincott Williams & Wilkins; 2013. pp. 699–712.

  27. Wagner E, Ortiz C, Villalon IE, Keller A, Wagner P. Early weight-bearing after percutaneous reduction and screw fixation for low-energy lisfranc injury. Foot Ankle Int. 2013;34:978–83.

    Article  PubMed  Google Scholar 

  28. Firoozabadi R, Harnden E, Krieg JC. Immediate weight-bearing after ankle fracture fixation. Adv Orthop. 2015;491976. doi:10.1155/2015/491976.

  29. Kershaw CJ, Cunningham JL, Kenwright J: Tibial external fixation, weight bearing, and fracture movement. Clin Orthop Relat Res 1993;293:28–36.

  30. Martelli S, Pivonka P, Ebeling PR. Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin Biomech. 2014;29:869–76.

    Article  Google Scholar 

  31. Milgrom C, Finestone A, Levi Y, Simkin A, Ekenman I, Mendelson S, et al. Do high impact exercises produce higher tibial strains than running? Br J Sports Med. 2000;34:195–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Piekarski K, Munro M. Transport mechanism operating between blood-supply and osteocytes in long bones. Nature. 1977;269:80–2.

    Article  CAS  PubMed  Google Scholar 

  33. Birmingham E, Kreipke TC, Dolan EB, Coughlin TR, Owens P, McNamara LM, et al. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann Biomed Eng. 2015;43:1036–50.

    Article  CAS  PubMed  Google Scholar 

  34. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.

    Article  CAS  PubMed  Google Scholar 

  35. Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. Mechanosensory responses of ostoecytes to physiological forces occur along processes and not cell body and require αvβ3 integrin. Proc Natl Acad Sci U S A. 2013;110:21012–7.

  36. Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech. 1995;28:1281–97.

    Article  CAS  PubMed  Google Scholar 

  37. Dickerson DA, Sander EA, Nauman EA. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech Model Mechanobiol. 2008;7:191–202.

    Article  CAS  PubMed  Google Scholar 

  38. Metzger TA, Kreipke TC, Vaughan TJ, McNamara LM, Niebur GL: The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng. 2015;137. doi:10.1115/1.4028985

  39. Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface. 2012;9:2735–44.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J. 2015;108:1587–98. This study reports that osteocytes and osteoblasts experience different strain levels in response to mechanical loading, and that strain levels experienced change as a function of estrogen status.

    Article  CAS  PubMed  Google Scholar 

  41. Turner CH, Forwood MR, Forwood MR, Rho JY, Rho JY, Yoshikawa T, et al.: Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994;9:87–97.

  42. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000;122:387–93.

    Article  CAS  PubMed  Google Scholar 

  43. Frost HM. Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992;7:253–61.

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res. 2001;16:2291–7.

    Article  CAS  PubMed  Google Scholar 

  45. Lee KCL, Maxwell A, Lanyon LE. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone. 2002;31:407–12.

    Article  CAS  PubMed  Google Scholar 

  46. De Souza RL, Matsuura M, Eckstein F, Rawlinson SCF, Lanyon LE, Pitsillides AA. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone. 2005;37:810–8.

    Article  PubMed  Google Scholar 

  47. Norman SC, Wagner DW, Beaupre GS, Castillo AB. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies. J Biomech. 2015;48:53–8.

    Article  PubMed  Google Scholar 

  48. Sugiyama T, Browne WJ, Galea GL, Price JS, Lanyon LE. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res. 2012;27:1784–93.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS ONE. 2013;8, e62172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone. 2014;66:15–25.

    Article  PubMed  Google Scholar 

  51. Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements. Bone. 2015;75:210–21. This study describes a novel method utilizing in vivo microCT imaging and a 4D computational approach to visualize and quantify bone turnover, which will allow tracking of bone formation and resorption surfaces over time in a subject-specific manner.

    Article  PubMed  Google Scholar 

  52. Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study. Acta Biomater. 2015;13:301–10.

  53. Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S. Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res. 2015. doi:10.1002/jbmr.2528. This important new study demonstrates that as bone ages, its response to mechanical loading becomes less specific; that is, there is no longer a positive quasi-linear relationship between strain and bone formation, and high strains are less effective at attenuating bone resorption.

    PubMed  Google Scholar 

  54. Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. The influence of age on adaptive bone formation and bone resorption. Biomaterials. 2014;35:9290–301.

    Article  CAS  PubMed  Google Scholar 

  55. Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone-formation in rats. J Bone Miner Res. 1995;10:1544–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lynch ME, Main RP, Xu Q, Schmicker TL, Schaffler MB, Wright TM, et al. Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone. 2011;49:439–46.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Castillo AB, Mahaffey I, Cole W: Aging mice exhibit reduced periosteal and greater endosteal mechanoresponsiveness following two weeks of axial compressive loading. J Bone Miner Res. 2012; Abstract available from: http://www.asbmr.org/education/AbstractDetail?aid=2823e366-76ef-4621-8608-b043b0effba6

  58. Holguin N, Brodt MD, Sanchez ME, Silva MJ: Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6. Bone. 2014;65:83–91.

  59. Ajubi NE, Ajubi NE, Klein-Nulend J, Klein-Nulend J, Alblas MJ, Alblas MJ, et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol. 1999;276:E171–8.

    CAS  PubMed  Google Scholar 

  60. Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, et al. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J. 2014;28:1582–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Vatsa A, Smit TH, Klein-Nulend J. Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech. 2007;40 Suppl 1:S89–95.

    Article  PubMed  Google Scholar 

  62. Santos A, Bakker AD, Zandieh-Doulabi B, de Blieck-Hogervorst JMA, Klein-Nulend J. Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem Biophys Res Commun. 2010;391:364–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kitase Y, Barragan L, Qing H, Kondoh S, Jiang JX, Johnson ML, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J Bone Miner Res. 2010;25:2657–68.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.

    Article  CAS  PubMed  Google Scholar 

  65. Heino TJ, Hentunen TA, Väänänen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res. 2004;294:458–68.

    Article  CAS  PubMed  Google Scholar 

  66. Leucht P, Temiyasathit S, Russell A, Arguello JF, Jacobs CR, Helms JA, et al. CXCR4 antagonism attenuates load-induced periosteal bone formation in mice. J Orthop Res. 2013;31:1828–38.

    CAS  PubMed  Google Scholar 

  67. Govey PM, Jacobs JM, Tilton SC, Loiselle AE, Zhang Y, Freeman WM, et al. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways. J Biomech. 2014;47:1838–45.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  CAS  PubMed  Google Scholar 

  69. Kennedy OD, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone. 2014;64:132–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Dolan EB, Haugh MG, Voisin MC, Tallon D, McNamara LM. Thermally induced osteocyte damage initiates a remodelling signaling cascade. PLoS ONE. 2015;10, e0119652.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Le Y, Zhou Y, Iribarren P, Wang JM. Chemokines and Chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004;1:95–104.

    CAS  PubMed  Google Scholar 

  72. van Bezooijen RL, Roelen BAJ, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199:805–14.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Li X, Ominsky MS, Niu Q-T, Sun N, Daugherty B, D’Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23:860–9.

    Article  PubMed  Google Scholar 

  74. Lau K-HW, Baylink DJ, Zhou X-D, Rodriguez D, Bonewald LF, Li Z, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab. 2013;305:E271–81.

    Article  CAS  PubMed  Google Scholar 

  75. Javaheri B, Stern AR, Lara N, Dallas M, Zhao H, Liu Y, et al. Deletion of a single β-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res. 2014;29:705–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sun Y-X, Li L, Corry KA, Zhang P, Yang Y, Himes E, et al. Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation. Bone. 2015;74:1–9.

    Article  CAS  PubMed  Google Scholar 

  77. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  78. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–95.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Q, Shou P, Zhang L, Xu C, Zheng C, Han Y, et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells. 2014;32:327–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Alimperti S, You H, George T, Agarwal SK, Andreadis ST. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo. J Cell Sci. 2014;127:2627–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci. 2009;122:546–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    Article  CAS  PubMed  Google Scholar 

  83. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, et al. Role of TAZ as mediator of Wnt signaling. Cell. 2012;151:1443–56.

    Article  CAS  PubMed  Google Scholar 

  84. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157–70.

    Article  CAS  PubMed  Google Scholar 

  85. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588:2663–70.

    Article  CAS  PubMed  Google Scholar 

  86. Carter DR, Beaupré GS: Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355:S41–55.

  87. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, et al.: Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355:S132–47.

  88. Lacroix D, Prendergast PJ, Li G, Marsh D. Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput. 2002;40:14–21.

    Article  CAS  PubMed  Google Scholar 

  89. Gardner MJ, van der Meulen MCH, Demetrakopoulos D, Wright TM, Myers ER, Bostrom MP: In vivo cyclic axial compression affects bone healing in the mouse tibia. 2006;24:1679–86.

  90. Palomares KTS, Gleason RE, Mason ZD, Cullinane DM, Einhorn TA, Gerstenfeld LC, et al.: Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. 2009;27:1123–32.

  91. Boerckel JD, Kolambkar YM, Stevens HY, Lin ASP, Dupont KM, Guldberg RE: Effects of in vivo mechanical loading on large bone defect regeneration. 2012;30:1067–75.

  92. Boerckel JD, Uhrig BA, Willett NJ, Huebsch N, Guldberg RE. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci U S A. 2011;108:E674–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Simanski CJP, Maegele MG, Lefering R, Lehnen DM, Kawel N, Riess P, et al. Functional treatment and early weightbearing after an ankle fracture: a prospective study. J Orthop Trauma. 2006;20:108–14.

    Article  PubMed  Google Scholar 

  94. González M, Peña J, Gil FJ, Manero JM. Low modulus Ti-Nb-Hf alloy for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2014;42:691–5.

    Article  PubMed  Google Scholar 

  95. Rodriguez JA, Deshmukh AJ, Klauser WU, Rasquinha VJ, Lubinus P, Ranawat CS. Patterns of osseointegration and remodeling in femoral revision with bone loss using modular, tapered, fluted, titanium stems. J Arthroplasty. 2011;26:1409–17.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alesha B. Castillo.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, A.B., Leucht, P. Bone Homeostasis and Repair: Forced Into Shape. Curr Rheumatol Rep 17, 58 (2015). https://doi.org/10.1007/s11926-015-0537-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0537-9

Keywords

Navigation