Skip to main content

Advertisement

Log in

Treg Cells in Rheumatoid Arthritis: An Update

  • RHEUMATOID ARTHRITIS (LW MORELAND, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease arising from a breakdown in immunological self-tolerance, which leads to aberrant immune responses to autoantigens. Regulatory CD4+ T-cells (Tregs) underpin one of the key mechanisms of self-tolerance and are a major focus of study in RA and other autoimmune diseases. In order to design new and improved therapies to reinstate self-tolerance, and perhaps cure disease, we need to understand the complex mechanism of action of Tregs. This review addresses recent findings in the field of Tregs in RA, with particular focus on identification of potential defects in Treg-mediated self-tolerance mechanisms present in RA patients, as well as how Tregs interact with other cells in the inflamed joints. As antigen-specific Tregs are a potential route for the reinstatement of immune tolerance, we also discuss new strategies currently being investigated which expand or induce de novo generation of Tregs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    PubMed  CAS  Google Scholar 

  2. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  PubMed  CAS  Google Scholar 

  3. Bilate AM, Lafaille JJ. Induced CD4 + Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733–58.

    Article  PubMed  CAS  Google Scholar 

  4. Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–41.

    Article  PubMed  CAS  Google Scholar 

  5. van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50(9):2775–85.

    Article  PubMed  Google Scholar 

  6. Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4 + CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005;62(3):312–7.

    Article  PubMed  CAS  Google Scholar 

  7. Mottonen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 2005;140(2):360–7.

    Article  PubMed  CAS  Google Scholar 

  8. Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200(3):277–85.

    Article  PubMed  CAS  Google Scholar 

  9. Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4 + CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford). 2006;45(10):1210–7.

    Article  CAS  Google Scholar 

  10. Xiao H, Wang S, Miao R, Kan W. TRAIL is associated with impaired regulation of CD4 + CD25- T cells by regulatory T cells in patients with rheumatoid arthritis. J Clin Immunol. 2011;31(6):1112–9.

    Article  PubMed  CAS  Google Scholar 

  11. van Amelsfort JM, van Roon JA, Noordegraaf M, et al. Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 2007;56(3):732–42.

    Article  PubMed  Google Scholar 

  12. Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med. 2007;204(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  13. Flores-Borja F, Jury EC, Mauri C, Ehrenstein MR. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2008;105(49):19396–401.

    Article  PubMed  CAS  Google Scholar 

  14. Biton J, Semerano L, Delavallee L, et al. Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis. J Immunol. 2011;186(7):3899–910.

    Article  PubMed  CAS  Google Scholar 

  15. Valencia X, Stephens G, Goldbach-Mansky R, et al. TNF downmodulates the function of human CD4 + CD25hi T-regulatory cells. Blood. 2006;108(1):253–61.

    Article  PubMed  CAS  Google Scholar 

  16. Nagar M, Jacob-Hirsch J, Vernitsky H, et al. TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol. 2010;184(7):3570–81.

    Article  PubMed  CAS  Google Scholar 

  17. •• Zanin-Zhorov A, Ding Y, Kumari S, et al. Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science. 2010;328(5976):372–6. This paper provides convincing explanations as to why Tregs may be defective in RA.

    Article  PubMed  CAS  Google Scholar 

  18. •• Zanin-Zhorov A, Lin J, Scher J, et al. Scaffold protein Disc large homolog 1 is required for T-cell receptor-induced activation of regulatory T-cell function. Proc Natl Acad Sci U S A. 2012;109(5):1625–30. This paper provides convincing explanations as to why Tregs may be defective in RA.

    Article  PubMed  CAS  Google Scholar 

  19. Chistiakov DA, Chistiakov AP. Is FCRL3 a new general autoimmunity gene? Hum Immunol. 2007;68(5):375–83.

    Article  PubMed  CAS  Google Scholar 

  20. Swainson LA, Mold JE, Bajpai UD, McCune JM. Expression of the autoimmune susceptibility gene FcRL3 on human regulatory T cells is associated with dysfunction and high levels of programmed cell death-1. J Immunol. 2010;184(7):3639–47.

    Article  PubMed  CAS  Google Scholar 

  21. Nagata S, Ise T, Pastan I. Fc receptor-like 3 protein expressed on IL-2 nonresponsive subset of human regulatory T cells. J Immunol. 2009;182(12):7518–26.

    Article  PubMed  CAS  Google Scholar 

  22. Haufe S, Haug M, Schepp C, et al. Impaired suppression of synovial fluid CD4 + CD25- T cells from patients with juvenile idiopathic arthritis by CD4 + CD25+ Treg cells. Arthritis Rheum. 2011;63(10):3153–62.

    Article  PubMed  CAS  Google Scholar 

  23. Wehrens EJ, Mijnheer G, Duurland CL, et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood. 2011;118(13):3538–48.

    Article  PubMed  CAS  Google Scholar 

  24. Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8–18.

    Article  PubMed  CAS  Google Scholar 

  25. Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–52.

    Article  PubMed  CAS  Google Scholar 

  26. Voo KS, Wang YH, Santori FR, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009;106(12):4793–8.

    Article  PubMed  CAS  Google Scholar 

  27. Deknuydt F, Bioley G, Valmori D, Ayyoub M. IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin Immunol. 2009;131(2):298–307.

    Article  PubMed  CAS  Google Scholar 

  28. Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009;113(18):4240–9.

    Article  PubMed  CAS  Google Scholar 

  29. Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORgammat + TH17 cells preferentially differentiate from naive FOXP3 + Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci U S A. 2010;107(45):19402–7.

    Article  PubMed  CAS  Google Scholar 

  30. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4 + CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007;178(11):6725–9.

    PubMed  CAS  Google Scholar 

  31. Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  32. Wang W, Shao S, Jiao Z, et al. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int. 2012;32(4):887–93.

    Article  PubMed  CAS  Google Scholar 

  33. Niu Q, Cai B, Huang ZC, et al. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int. 2012;32(9):2731–6.

    Article  PubMed  CAS  Google Scholar 

  34. Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.

    Article  PubMed  CAS  Google Scholar 

  35. • McGovern JL, Nguyen DX, Notley CA, et al. Th17 cells are restrained by Treg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 2012;64(10):3129–38. This paper provides evidence that anti-TNF therapy can confer a capacity for Tregs to suppress Th17 cells.

    Article  PubMed  CAS  Google Scholar 

  36. E XQ, Meng HX, Cao Y, et al. Distribution of regulatory T cells and interaction with dendritic cells in the synovium of rheumatoid arthritis. Scand J Rheumatol. 2012;41(6):413–20.

    Article  PubMed  CAS  Google Scholar 

  37. Darrasse-Jeze G, Deroubaix S, Mouquet H, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206(9):1853–62.

    Article  PubMed  CAS  Google Scholar 

  38. Svensson MN, Andersson SE, Erlandsson MC, et al. Fms-like tyrosine kinase 3 ligand controls formation of regulatory T cells in autoimmune arthritis. PLoS One. 2013;8(1):e54884.

    Article  PubMed  CAS  Google Scholar 

  39. Dehlin M, Bokarewa M, Rottapel R, et al. Intra-articular fms-like tyrosine kinase 3 ligand expression is a driving force in induction and progression of arthritis. PLoS One. 2008;3(11):e3633.

    Article  PubMed  Google Scholar 

  40. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299(5609):1033–6.

    Article  PubMed  CAS  Google Scholar 

  41. Walter GJ, Evans HG, Menon B, et al. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4 + CD45ro + CD25 + CD127(low) regulatory T cells. Arthritis Rheum. 2013;65(3):627–38.

    Article  PubMed  CAS  Google Scholar 

  42. Miranda-Carus ME, Balsa A, Benito-Miguel M, et al. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol. 2004;173(2):1463–76.

    PubMed  CAS  Google Scholar 

  43. Benito-Miguel M, Garcia-Carmona Y, Balsa A, et al. A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4 + CD25+ regulatory T cells and CD4 + CD25- responder T cells. J Immunol. 2009;183(12):8268–79.

    Article  PubMed  CAS  Google Scholar 

  44. Kim SH, Youn J. Rheumatoid Fibroblast-like synoviocytes downregulate Foxp3 expression by regulatory t cells via GITRL/GITR interaction. Immune Netw. 2012;12(5):217–21.

    Article  PubMed  Google Scholar 

  45. Zaiss MM, Axmann R, Zwerina J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56(12):4104–12.

    Article  PubMed  CAS  Google Scholar 

  46. Kelchtermans H, Geboes L, Mitera T, et al. Activated CD4 + CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis. 2009;68(5):744–50.

    Article  PubMed  CAS  Google Scholar 

  47. Zaiss MM, Frey B, Hess A, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010;184(12):7238–46.

    Article  PubMed  CAS  Google Scholar 

  48. Kong N, Lan Q, Chen M, et al. Induced T regulatory cells suppress osteoclastogenesis and bone erosion in collagen-induced arthritis better than natural T regulatory cells. Ann Rheum Dis. 2012;71(9):1567–72.

    Article  PubMed  Google Scholar 

  49. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3 + CD4 + CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol. 2008;180(11):7112–6.

    PubMed  CAS  Google Scholar 

  50. Xinqiang S, Fei L, Nan L, et al. Therapeutic efficacy of experimental rheumatoid arthritis with low-dose methotrexate by increasing partially CD4 + CD25+ Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother. 2010;64(7):463–71.

    Article  PubMed  Google Scholar 

  51. Oh JS, Kim YG, Lee SG, et al. The effect of various disease-modifying anti-rheumatic drugs on the suppressive function of CD4(+)CD25(+) regulatory T cells. Rheumatol Int. 2013;33(2):381–8.

    Article  PubMed  CAS  Google Scholar 

  52. Wang TY, Li J, Li CY, et al. Leflunomide induces immunosuppression in collagen-induced arthritis rats by upregulating CD4 + CD25+ regulatory T cells. Can J Physiol Pharmacol. 2010;88(1):45–53.

    Article  PubMed  Google Scholar 

  53. Blache C, Lequerre T, Roucheux A, et al. Number and phenotype of rheumatoid arthritis patients’ CD4 + CD25hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology (Oxford). 2011;50(10):1814–22.

    Article  CAS  Google Scholar 

  54. Aravena O, Pesce B, Soto L, et al. Anti-TNF therapy in patients with rheumatoid arthritis decreases Th1 and Th17 cell populations and expands IFN-gamma-producing NK cell and regulatory T cell subsets. Immunobiology. 2011;216(12):1256–63.

    Article  PubMed  CAS  Google Scholar 

  55. • Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171(3):237–42. This paper provides evidence in an RA population of the potential therapeutic effect of IL-6 inhibition on Tregs.

    Article  PubMed  CAS  Google Scholar 

  56. • Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(8):2499–503. This paper provides evidence in an RA population of the potential therapeutic effect of IL-6 inhibition on Tregs.

    Article  PubMed  CAS  Google Scholar 

  57. Yoshida H, Hashizume M, Suzuki M, Mihara M. Anti-IL-6 receptor antibody suppressed T cell activation by inhibiting IL-2 production and inducing regulatory T cells. Eur J Pharmacol. 2010;634(1–3):178–83.

    Article  PubMed  CAS  Google Scholar 

  58. Alvarez-Quiroga C, Abud-Mendoza C, Doniz-Padilla L, et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of Treg cells in patients with rheumatoid arthritis. J Clin Immunol. 2011;31(4):588–95.

    Article  PubMed  CAS  Google Scholar 

  59. Ko HJ, Cho ML, Lee SY, et al. CTLA4-Ig modifies dendritic cells from mice with collagen-induced arthritis to increase the CD4 + CD25 + Foxp3+ regulatory T cell population. J Autoimmun. 2010;34(2):111–20.

    Article  PubMed  CAS  Google Scholar 

  60. Hamel KM, Cao Y, Ashaye S, et al. B cell depletion enhances T regulatory cell activity essential in the suppression of arthritis. J Immunol. 2011;187(9):4900–6.

    Article  PubMed  CAS  Google Scholar 

  61. Feuchtenberger M, Muller S, Roll P, et al. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81–8.

    Article  PubMed  CAS  Google Scholar 

  62. Tang TT, Song Y, Ding YJ, et al. Atorvastatin upregulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52(5):1023–32.

    Article  PubMed  CAS  Google Scholar 

  63. Cao T, Wenzel SE, Faubion WA, et al. Enhanced suppressive function of regulatory T cells from patients with immune-mediated diseases following successful ex vivo expansion. Clin Immunol. 2010;136(3):329–37.

    Article  PubMed  CAS  Google Scholar 

  64. Ellis GI, Reneer MC, Velez-Ortega AC, et al. Generation of induced regulatory T cells from primary human naive and memory T cells. J Vis Exp. 2012;(62).

  65. Flores-Borja F, Bosma A, Ng D, et al. CD19 + CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med. 2013;5(173):173ra23.

    Article  PubMed  CAS  Google Scholar 

  66. Park MJ, Park HS, Cho ML, et al. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum. 2011;63(6):1668–80.

    Article  PubMed  CAS  Google Scholar 

  67. • Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):241–8. Using an in vitro model, this paper shows how RA T-cell pathogenic responses can be modulated and Treg populations expanded.

    Article  PubMed  CAS  Google Scholar 

  68. Carranza F, Falcon CR, Nunez N, et al. Helminth antigens enable CpG-activated dendritic cells to inhibit the symptoms of collagen-induced arthritis through Foxp3+ regulatory T cells. PLoS One. 2012;7(7):e40356.

    Article  PubMed  CAS  Google Scholar 

  69. Kleijwegt FS, Laban S, Duinkerken G, et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J Immunol. 2010;185(3):1412–8.

    Article  PubMed  CAS  Google Scholar 

  70. Haque R, Lei F, Xiong X, et al. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther. 2010;12(2):R66.

    Article  PubMed  Google Scholar 

  71. Wright GP, Notley CA, Xue SA, et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc Natl Acad Sci U S A. 2009;106(45):19078–83.

    Article  PubMed  CAS  Google Scholar 

  72. Furuzawa-Carballeda J, Macip-Rodriguez P, Galindo-Feria AS, et al. Polymerized-type I collagen induces upregulation of Foxp3-expressing CD4 regulatory T cells and downregulation of IL-17-producing CD4(+) T cells (Th17) cells in collagen-induced arthritis. Clin Dev Immunol. 2012;2012:618608.

    Article  PubMed  Google Scholar 

  73. Sun J, Li R, Guo J, et al. Superior molecularly altered influenza virus hemagglutinin peptide 308–317 inhibits collagen-induced arthritis by inducing CD4+ Treg cell expansion. Arthritis Rheum. 2012;64(7):2158–68.

    Article  PubMed  CAS  Google Scholar 

  74. Dominguez Mdel C, Lorenzo N, Barbera A, et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity. 2011;44(6):471–82.

    Article  PubMed  Google Scholar 

  75. Chen G, Hao J, Xi Y, et al. The therapeutic effect of vasoactive intestinal peptide on experimental arthritis is associated with CD4 + CD25+ T regulatory cells. Scand J Immunol. 2008;68(6):572–8.

    Article  PubMed  CAS  Google Scholar 

  76. Deng S, Xi Y, Wang H, et al. Regulatory effect of vasoactive intestinal peptide on the balance of Treg and Th17 in collagen-induced arthritis. Cell Immunol. 2010;265(2):105–10.

    Article  PubMed  CAS  Google Scholar 

  77. Srivastava RK, Tomar GB, Barhanpurkar AP, et al. IL-3 attenuates collagen-induced arthritis by modulating the development of Foxp3+ regulatory T cells. J Immunol. 2011;186(4):2262–72.

    Article  PubMed  CAS  Google Scholar 

  78. Arce F, Breckpot K, Stephenson H, et al. Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum. 2011;63(1):84–95.

    Article  PubMed  CAS  Google Scholar 

  79. Solt LA, Kumar N, He Y, et al. Identification of a selective RORgamma ligand that suppresses T(H)17 cells and stimulates T regulatory cells. ACS Chem Biol. 2012;7(9):1515–9.

    Article  PubMed  CAS  Google Scholar 

  80. Duarte J, Agua-Doce A, Oliveira VG, et al. Modulation of IL-17 and Foxp3 expression in the prevention of autoimmune arthritis in mice. PLoS One. 2010;5(5):e10558.

    Article  PubMed  Google Scholar 

  81. Notley CA, McCann FE, Inglis JJ, Williams RO. ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ Treg cells and induces sustained amelioration of collagen-induced arthritis. Arthritis Rheum. 2010;62(1):171–8.

    Article  PubMed  CAS  Google Scholar 

  82. Capini C, Jaturanpinyo M, Chang HI, et al. Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol. 2009;182(6):3556–65.

    Article  PubMed  CAS  Google Scholar 

  83. Weng L, Williams RO, Vieira PL, et al. The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Ann Rheum Dis. 2010;69(8):1519–26.

    Article  PubMed  CAS  Google Scholar 

  84. Saouaf SJ, Li B, Zhang G, et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol. 2009;87(2):99–104.

    Article  PubMed  CAS  Google Scholar 

  85. Huang L, Lemos HP, Li L, et al. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol. 2012;188(10):4913–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Faye A. H. Cooles declares that she has no conflict of interest.

John D. Isaacs declares that he has no conflict of interest.

Amy E. Anderson declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Isaacs.

Additional information

This article is part of the Topical Collection on Rheumatoid Arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooles, F.A.H., Isaacs, J.D. & Anderson, A.E. Treg Cells in Rheumatoid Arthritis: An Update. Curr Rheumatol Rep 15, 352 (2013). https://doi.org/10.1007/s11926-013-0352-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0352-0

Keywords

Navigation