Skip to main content

Advertisement

Log in

New insights: Elevated follicle-stimulating hormone and bone loss during the menopausal transition

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

We hypothesize that a rising follicle-stimulating hormone (FSH) level during the menopausal transition, even in the face of a normal estrogen level, contributes to increased bone resorption and profound bone loss that is accompanied by trabecular perforation and diminished bone strength. FSH has been shown to directly stimulate osteoclast formation and bone resorption, and our murine genetic studies indicate that the absence of FSH can, in part, protect against hypogonadal hyperresorption that causes bone loss. Furthermore, carefully conducted human studies, such as the Study of Women Across Nations (SWAN), indicate strong correlations between serum FSH levels and bone loss. Potential therapeutic implications include the development of antagonists to circulating FSH and its osteoclastic receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Albright F, Smith PH, Richardson AM: Post menopausal osteoporosis. JAMA 1941, 1167:2465–2474.

    Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ 3rd: Sex steroids and the construction and conservation of the adult skeleton. Endoc Rev 2002, 23:279–302.

    Article  CAS  Google Scholar 

  3. Shevde NK, Bendixen AC, Dienger KM, Pike JW: Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-jun repression. Proc Natl Acad Sci 2000, 97:7829–7834.

    Article  PubMed  CAS  Google Scholar 

  4. Srivastava S, Toraldo G, Weitzmann MN, et al.: Estrogen decreases osteoclast formation by downregulating receptor activator for NF-kappa B ligand induced JNK activation. J Biol Chem 2002, 276:8836–8840.

    Article  Google Scholar 

  5. Srivastava S, Weitzmann MN, Kimble RB, et al.: Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J Clin Invest 1998, 102:1850–1859.

    Article  PubMed  CAS  Google Scholar 

  6. Roggia C, Gao Y, Cenci S, et al.: Up-regulation of TNF producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci 2001, 98:13960–13965.

    Article  PubMed  CAS  Google Scholar 

  7. García Palacios V, Robinson LJ, Borysenko CW, et al.: Negative regulation of RANKL induced osteoclastic differentiation in RAW264.7 cells by estrogen and phytoestrogens. J Biol Chem 2005, 280:13720–13727.

    Article  PubMed  Google Scholar 

  8. Armour KE, Armour KJ, Gallagher ME, et al.: Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 2001, 142:760–766.

    Article  PubMed  CAS  Google Scholar 

  9. Jagger CJ, Chow JW, Chambers TJ: Estrogen suppresses activation but enhances formation phase of osteogenic response to mechanical stimulation in rat bone. J Clin Invest 1996, 98:2351–2357.

    Article  PubMed  CAS  Google Scholar 

  10. Randolph JF, Sowers M, Bondarenko IV, et al.: Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metabol 2004, 89:1555–1561.

    Article  CAS  Google Scholar 

  11. Sowers MR, Jannausch M, McConnell D, et al.: Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metabol 2006, 91:1261–1267.

    Article  CAS  Google Scholar 

  12. Recker R, Lappe J, Davies KM, Heaney R: Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 2004, 19:1628–1633.

    Article  PubMed  Google Scholar 

  13. Akhter MP, Lappe JM, Davies KM, Recker RR: Transmenopausal changes in the trabecular bone structure. Bone 2007, 41:111–116.

    Article  PubMed  CAS  Google Scholar 

  14. Sun L, Peng Y, Sharrow AC, et al.: FSH directly regulates bone mass. Cell 2006, 125:247–260.

    Article  PubMed  CAS  Google Scholar 

  15. Wu Y, Torchia J, Yao W, et al.: Bone microenvironment specific roles of ITAM adapter signaling during bone remodeling induced by acute estrogen deficiency. PLoS ONE 2007, 2:e586.

    Article  PubMed  Google Scholar 

  16. Iqbal J, Sun L, Kumar TR, et al.: Follicle stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc Natl Acad Sci 2006, 103:14925–14930.

    Article  PubMed  CAS  Google Scholar 

  17. Gao J, Tiwari-Pandey R, Samadfam R, et al.: Altered ovarian function affects skeletal homeostasis independent of the action of follicle stimulating hormone. Endocrinology 2007, 148:2613–2621.

    Article  PubMed  CAS  Google Scholar 

  18. Miyaura C, Toda K, Inada M, et al.: Sex- and age-related response to aromatase deficiency in bone. Biochem Biophys Res Commun 2001, 280:1062–1068.

    Article  PubMed  CAS  Google Scholar 

  19. Sims NA, Dupont S, Krust A, et al.: Deletion of estrogen receptors reveals a regulatory role for estrogen receptorbeta in bone remodeling in females but not in males. Bone 2002, 30:18–25.

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura T, Imai Y, Matsumoto T, et al.: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 2007, 130:811–823.

    Article  PubMed  CAS  Google Scholar 

  21. Dawson-Hughes B: Bone loss accompanying medical therapies. N Engl J Med 2001, 345:989–992.

    Article  PubMed  CAS  Google Scholar 

  22. Sowers MR, Greendale GA, Bondarenko J, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Ost Internat 2003, 14:191–197.

    CAS  Google Scholar 

  23. Xu ZR, Wang AH, Wu XP, et al.: Relationship of agerelated concentrations of serum FSH and LH with bone mineral density, prevalence of osteoporosis in native Chinese women. Clin Chim Acta 2009, 400:8–13.

    Article  PubMed  CAS  Google Scholar 

  24. Devleta B, Adem B, Seneda S: Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J Bone Min Res 2004, 22:360–364.

    Google Scholar 

  25. Gaddy-Kurten D, Coker JK, Abe E, et al.: Inhibin suppresses and activin stimulates osteoclastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology 2002, 143:74–83.

    Article  PubMed  CAS  Google Scholar 

  26. Eijken M, Swagemakers S, Koedam M, et al.: The activin Afollistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 2007, 21:2949–2960.

    Article  PubMed  Google Scholar 

  27. Nicks KM, Akel NS, Liu L, et al.: Physiological concentrations of inhibin A are anabolic, affecting both trabecular and cortical bone in normal intact mice. J Bone Min Res 2008, 23:S417.

    Article  Google Scholar 

  28. Kalak R, Allan CM, McTavish KJ, et al.: Transgenic expression of human FSH in female mice has an anabolic effect on bone. J Bone Min Res 2008, 23:S63.

    Google Scholar 

  29. Abe E, Marians RC, Yu W, et al.: TSH is a negative regulator of skeletal remodeling. Cell 2003, 115:151–162.

    Article  PubMed  CAS  Google Scholar 

  30. Hase H, Ando T, Eldeiry L, et al.: TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci U S A 2006, 103:12849–12854.

    Article  PubMed  CAS  Google Scholar 

  31. Sun L, Vukicevic S, Baliram R, et al.: Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci U S A 2008, 105:4289–4294.

    Article  PubMed  CAS  Google Scholar 

  32. Britt KL, Drummond AE, Dyson M, et al.: The ovarian phenotype of the aromatase knockout (ArKO) mouse. J Steroid Biochem Mol Biol 2001, 79:181–185.

    Article  PubMed  CAS  Google Scholar 

  33. Couse JF, Yates MM, Walker VR, et al.: Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol Endocrinol 2003, 17:1039–1053.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mone Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, M., Blair, H.C., Iqbal, J. et al. New insights: Elevated follicle-stimulating hormone and bone loss during the menopausal transition. Curr Rheumatol Rep 11, 191–195 (2009). https://doi.org/10.1007/s11926-009-0026-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-009-0026-0

Keywords

Navigation