Skip to main content

Advertisement

Log in

The Promise of Biomarkers in Diagnosing Major Depression in Primary Care: the Present and Future

  • Psychiatry in Primary Care (BN Gaynes, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) is the most prevalent psychiatric disorder, but it can be underdiagnosed or misdiagnosed. Most people with depression are seen in primary care settings, where there are limited resources to diagnose and treat the patient. There is a lack of clinically validated objective laboratory-based diagnostic tests to diagnose MDD; however, it is clear that these tests could greatly improve the correct and timely diagnosis. This review aims to give a cross-sectional view of current efforts of DNA methylomic, transcriptomic, and proteomic approaches to identify biomarkers. We outline our view of the biomarker developmental steps from discovery to clinical application. We then propose that better cooperation will lead us closer to the common goal of identifying biological biomarkers for major depression. “The important thing is not to stop questioning. Curiosity has its own reason for existing.” Albert Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kupfer DJ, Frank E, Perel JM. The advantage of early treatment intervention in recurrent depression. Arch Gen Psychiatry. 1989;46(9):771–5.

    Article  CAS  PubMed  Google Scholar 

  2. Halfin A. Depression: the benefits of early and appropriate treatment. Am J Manage Care. 2007;13(4):S92–7.

    Google Scholar 

  3. Luoma JB, Martin CE, Pearson JL. Contact with mental health and primary care providers before suicide: a review of the evidence. Am J Psychiatry. 2002;159(6):909–16.

    Article  PubMed  Google Scholar 

  4. Kirmayer LJ, Robbins JM, Dworkind M, Yaffe MJ. Somatization and the recognition of depression and anxiety in primary care. Am J Psychiatry. 1993;150(5):734–41.

    Article  CAS  PubMed  Google Scholar 

  5. King M, Nazareth I, Levy G, Walker C, Morris R, Weich S, et al. Prevalence of common mental disorders in general practice attendees across Europe. Br J Psychiatry. 2008;192(5):362–7. doi:10.1192/bjp.bp.107.039966.

    Article  PubMed  Google Scholar 

  6. Mitchell AJ. Are one or two simple questions sufficient to detect depression in cancer and palliative care? a Bayesian meta-analysis. Br J Cancer. 2008;98(12):1934–43. doi:10.1038/sj.bjc.6604396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chan MK, Gottschalk MG, Haenisch F, Tomasik J, Ruland T, Rahmoune H, et al. Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol. 2014;122:45–72. doi:10.1016/j.pneurobio.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  8. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311(4):392–404. doi:10.1001/jama.2013.284664.

    Article  CAS  PubMed  Google Scholar 

  9. Ziegler A, Koch A, Krockenberger K, Grosshennig A. Personalized medicine using DNA biomarkers: a review. Hum Genet. 2012;131(10):1627–38. doi:10.1007/s00439-012-1188-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet. 2008;17(2):R156–65. doi:10.1093/hmg/ddn289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Major Depressive Disorder Working Group of the Psychiatric GC, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18(4):497–511. doi:10.1038/mp.2012.21.

    Article  Google Scholar 

  12. Hek K, Demirkan A, Lahti J, Terracciano A, Teumer A, Cornelis MC, et al. A genome-wide association study of depressive symptoms. Biol Psychiatry. 2013;73(7):667–78. doi:10.1016/j.biopsych.2012.09.033.

    Article  CAS  PubMed  Google Scholar 

  13. Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81(3):484–503. doi:10.1016/j.neuron.2014.01.027. The most recent critical review on the state of research identifying genetic contribution to disease susceptibility. Specific emphasis on disease subtypes.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB, et al. Evidence for a relationship between genetic variants at the brain-derived Neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005;58(4):307–14. doi:10.1016/j.biopsych.2005.04.006.

    Article  CAS  PubMed  Google Scholar 

  15. Licinio J, Dong C, Wong ML. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch Gen Psychiatry. 2009;66(5):488–97. doi:10.1001/archgenpsychiatry.2009.38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Serretti A, Drago A, De Ronchi D. HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem. 2007;14(19):2053–69.

    Article  CAS  PubMed  Google Scholar 

  17. Levinson DF. The genetics of depression: a review. Biol Psychiatry. 2006;60(2):84–92. doi:10.1016/j.biopsych.2005.08.024.

    Article  CAS  PubMed  Google Scholar 

  18. Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009;14(12):1105–18. doi:10.1038/mp.2009.92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cervilla JA, Rivera M, Molina E, Torres-Gonzalez F, Bellon JA, Moreno B, et al. The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: the PREDICT-gene study. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):912–7. doi:10.1002/ajmg.b.30455.

    Article  CAS  PubMed  Google Scholar 

  20. Gyekis JP, Yu W, Dong S, Wang H, Qian J, Kota P, et al. No association of genetic variants in BDNF with major depression: a meta- and gene-based analysis. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(1):61–70. doi:10.1002/ajmg.b.32122.

    Article  PubMed  Google Scholar 

  21. Jin C, Xu W, Yuan J, Wang G, Cheng Z. Meta-analysis of association between the -1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res. 2013;35(1):7–14. doi:10.1179/1743132812Y.0000000111.

    Article  PubMed  Google Scholar 

  22. Byrne EM, Carrillo-Roa T, Henders AK, Bowdler L, McRae AF, Heath AC, et al. Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Transcult Psychiatry. 2013;3, e269. doi:10.1038/tp.2013.45.

    Article  CAS  Google Scholar 

  23. Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, et al. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry. 2014;76(12):977–83. doi:10.1016/j.biopsych.2014.04.013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu H, et al. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol. 2014;15(4):R56. doi:10.1186/gb-2014-15-4-r56.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Numata S, Ishii K, Tajima A, Iga J, Kinoshita M, Watanabe S, et al. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation. Epigenetics. 2015;10(2):135–41. doi:10.1080/15592294.2014.1003743. Unbiased genome-wide DNA methylation profiling demonstrated that methylation markers could serve as blood-based biomarkers for MDD.

    Article  PubMed  Google Scholar 

  26. Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY, Kim SW, et al. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:23–8. doi:10.1016/j.pnpbp.2013.01.006.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Goldberg J, Bremner JD, Vaccarino V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study. Psychosom Med. 2013;75(6):523–9. doi:10.1097/PSY.0b013e3182924cf4.

    Article  CAS  PubMed  Google Scholar 

  28. Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, et al. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res. 2014;53:47–53. doi:10.1016/j.jpsychires.2014.02.002.

    Article  PubMed  Google Scholar 

  29. D’Addario C, Dell’Osso B, Galimberti D, Palazzo MC, Benatti B, Di Francesco A, et al. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol Psychiatry. 2013;73(2):e6–7. doi:10.1016/j.biopsych.2012.07.009.

    Article  PubMed  Google Scholar 

  30. Dell’Osso B, D’Addario C, Carlotta Palazzo M, Benatti B, Camuri G, Galimberti D, et al. Epigenetic modulation of BDNF gene: differences in DNA methylation between unipolar and bipolar patients. J Affect Disord. 2014;166:330–3. doi:10.1016/j.jad.2014.05.020.

    Article  PubMed  Google Scholar 

  31. Song Y, Miyaki K, Suzuki T, Sasaki Y, Tsutsumi A, Kawakami N, et al. Altered DNA methylation status of human brain derived neurotrophis factor gene could be useful as biomarker of depression. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(4):357–64. doi:10.1002/ajmg.b.32238.

    Article  PubMed  Google Scholar 

  32. Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC medicine. 2013;11:28. doi:10.1186/1741-7015-11-28. Review of the candidate biological process approach in identifying biomarkers for MDD. Focusing on inflammation, gluccocorticoid function-related and neuropasticity domains.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mostafavi S, Battle A, Zhu X, Potash JB, Weissman MM, Shi J, et al. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry. 2014;19(12):1267–74. doi:10.1038/mp.2013.161. A large transcriptomic study using RNA-Seq from whole blood. The findings confirmed the role of altered immune-signaling in the pathophysiological process to MDD.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Z, Li X, Sun N, Xu Y, Meng Y, Yang C, et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One. 2014;9(3):e93388. doi:10.1371/journal.pone.0093388.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Garbett KA, Vereczkei A, Kalman S, Brown JA, Taylor WD, Faludi G, et al. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry. 2015;77(3):256–65. doi:10.1016/j.biopsych.2014.05.015. From dermal fibroblast, using microarray analysis the authors identified mRNA and miRNA as candidate biomarkers. They also confirmed the differential expression by quantitative RT-PCR and identified targets for the miRNA candidate markers.

    Article  CAS  PubMed  Google Scholar 

  36. Spijker S, Van Zanten JS, De Jong S, Penninx BW, van Dyck R, Zitman FG, et al. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol Psychiatry. 2010;68(2):179–86. doi:10.1016/j.biopsych.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  37. Menke A, Arloth J, Putz B, Weber P, Klengel T, Mehta D, et al. Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology. 2012;37(6):1455–64. doi:10.1038/npp.2011.331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Powell TR, McGuffin P, D’Souza UM, Cohen-Woods S, Hosang GM, Martin C, et al. Putative transcriptomic biomarkers in the inflammatory cytokine pathway differentiate major depressive disorder patients from control subjects and bipolar disorder patients. PLoS One. 2014;9(3), e91076. doi:10.1371/journal.pone.0091076.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry. 2009;14(2):156–74. doi:10.1038/mp.2008.11.

    Article  CAS  PubMed  Google Scholar 

  40. Redei EE, Andrus BM, Kwasny MJ, Seok J, Cai X, Ho J, et al. Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl Psychiatry. 2014;4, e442. doi:10.1038/tp.2014.66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pajer K, Andrus BM, Gardner W, Lourie A, Strange B, Campo J, et al. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl Psychiatry. 2012;2, e101. doi:10.1038/tp.2012.26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ditzen C, Tang N, Jastorff AM, Teplytska L, Yassouridis A, Maccarrone G, et al. Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology. 2012;37(4):1013–25. doi:10.1038/npp.2011.285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Alawam K, Dudley E, Donev R, Thome J. Protein and peptide profiling as a tool for biomarker discovery in depression. Electrophoresis. 2012;33(24):3830–4. doi:10.1002/elps.201200248. Proteomic approach identified three peptides as potential biomarker candidates, but the authors did not identify them!.

    Article  CAS  PubMed  Google Scholar 

  44. Lichtblau N, Schmidt FM, Schumann R, Kirkby KC, Himmerich H. Cytokines as biomarkers in depressive disorder: current standing and prospects. Int Rev Psychiatry. 2013;25(5):592–603. doi:10.3109/09540261.2013.813442.

    Article  PubMed  Google Scholar 

  45. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229. doi:10.1016/j.neuroscience.2013.04.060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, Ho RC, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord. 2012;139(3):230–9. doi:10.1016/j.jad.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  47. Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH, et al. Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and replication study. Mol Psychiatry. 2013;18(3):332–9. doi:10.1038/mp.2011.166. Assessment of a commercially available serum-based biomarker test. The details of the test need more transparency.

    Article  CAS  PubMed  Google Scholar 

  48. Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O, et al. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney memory and aging study. Psychoneuroendocrinology. 2012;37(9):1521–30. doi:10.1016/j.psyneuen.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  49. Arnold SE, Xie SX, Leung YY, Wang LS, Kling MA, Han X, et al. Plasma biomarkers of depressive symptoms in older adults. Transcult Psychiatry. 2012;2, e65. doi:10.1038/tp.2011.63.

    Article  CAS  Google Scholar 

  50. Mullins N, Hodgson K, Tansey KE, Perroud N, Maier W, Mors O, et al. Investigation of blood mRNA biomarkers for suicidality in an independent sample. Transcult Psychiatry. 2014;4, e474. doi:10.1038/tp.2014.112.

    Article  CAS  Google Scholar 

  51. Niculescu AB, Levey D, Le-Niculescu H, Niculescu E, Kurian SM, Salomon D. Psychiatric blood biomarkers: avoiding jumping to premature negative or positive conclusions. Mol Psychiatry. 2015;20(3):286–8. doi:10.1038/mp.2014.180. A sobering warning call that can be interpreted as self-serving.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Keri S, Szabo C, Kelemen O. Blood biomarkers of depression track clinical changes during cognitive-behavioral therapy. J Affect Disord. 2014;164:118–22. doi:10.1016/j.jad.2014.04.030.

    Article  CAS  PubMed  Google Scholar 

  53. Booth B, Arnold ME, DeSilva B, Amaravadi L, Dudal S, Fluhler E, et al. Workshop report: crystal city v-quantitative bioanalytical method validation and implementation: the 2013 revised FDA guidance. AAPS J. 2015;17(2):277–88. doi:10.1208/s12248-014-9696-2.

    Article  CAS  PubMed  Google Scholar 

  54. Hunter DJ, Losina E, Guermazi A, Burstein D, Lassere MN, Kraus V. A pathway and approach to biomarker validation and qualification for osteoarthritis clinical trials. Curr Drug Targets. 2010;11(5):536–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2015. doi:10.1016/j.pnpbp.2015.02.008.

    Google Scholar 

  56. Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. 2014;19(5):560–7. doi:10.1038/mp.2013.62.

    Article  CAS  PubMed  Google Scholar 

  57. Friess E, Schmid D, Modell S, Brunner H, Lauer CJ, Holsboer F, et al. Dex/CRH-test response and sleep in depressed patients and healthy controls with and without vulnerability for affective disorders. J Psychiatr Res. 2008;42(14):1154–62. doi:10.1016/j.jpsychires.2008.01.005.

    Article  PubMed  Google Scholar 

  58. Wong ML, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13(8):800–12. doi:10.1038/mp.2008.59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hashimoto K. Brain-derived Neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 2010;64(4):341–57. doi:10.1111/j.1440-1819.2010.02113.x.

    Article  CAS  PubMed  Google Scholar 

  60. Domenici E, Wille DR, Tozzi F, Prokopenko I, Miller S, McKeown A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case–control collections. PLoS One. 2010;5(2), e9166. doi:10.1371/journal.pone.0009166.

    Article  PubMed Central  PubMed  Google Scholar 

  61. U.S. Department of Health and Human Services FaDA. Guidance for Industry. Pharmacogenomic Data Submissions 2005.

  62. Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28. doi:10.1007/s11095-005-9045-3.

    Article  CAS  PubMed  Google Scholar 

  63. Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605–13.

    Article  CAS  PubMed  Google Scholar 

  64. Malhi GS. ICD future. The Australian and New Zealand journal of psychiatry. 2014;48(2):107–9. doi:10.1177/0004867414521720.

    Article  PubMed  Google Scholar 

  65. Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460(7252):202–7. doi:10.1038/460202a.

    Article  CAS  PubMed  Google Scholar 

  66. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62.

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51. doi:10.1038/nrg3240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. doi:10.1038/nature08494.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35. doi:10.1126/science.1132939.

    Article  CAS  PubMed  Google Scholar 

  70. Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Science translational medicine. 2011;3(96):96–77. doi:10.1126/scitranslmed.3001318.

    Article  Google Scholar 

  71. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010;107(33):14621–6. doi:10.1073/pnas.1000138107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Science translational medicine. 2011;3(96)):96–76. doi:10.1126/scitranslmed.3002648.

    Google Scholar 

  73. Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry. 2012;17(1):49–61. doi:10.1038/mp.2010.119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This material is the result of work supported by the Davee Foundation.

Compliance with Ethics Guidelines

Conflict of Interest

Neha S. Mehta declares no conflict of interest. Eva E. Redei reports grants from NIH and from the Davee foundation, some of which is on topics outside the submitted work. In addition, Dr. Redei is named as an inventor on three pending patents owned by Northwestern University: Redei EE, Andrus B: Methods for Detection of Depressive Disorders, Redei EE: Biomarkers predictive of predisposition to depression and response to treatment, and Redei EE: Compositions and methods for characterizing depressive disorders.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva E. Redei.

Additional information

This article is part of the Topical Collection on Psychiatry in Primary Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redei, E.E., Mehta, N.S. The Promise of Biomarkers in Diagnosing Major Depression in Primary Care: the Present and Future. Curr Psychiatry Rep 17, 64 (2015). https://doi.org/10.1007/s11920-015-0601-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0601-1

Keywords

Navigation