Skip to main content

Advertisement

Log in

Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications

  • Other Pain (AD Kaye and N Vadivelu, Section Editors)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Transcutaneous electrical nerve stimulation (TENS) is widely used as a non-pharmacological approach for pain relief in a variety of clinical conditions. This manuscript aimed to review the basic mechanisms and clinical applications regarding the use of TENS for alleviating the peripheral (PNP) and central neuropathic pain (CNP).

Recent Findings

Basic studies on animal models showed that TENS could alleviate pain by modulating neurotransmitters and receptors in the stimulation site and its upper levels, including the spinal cord, brainstem, and brain. Besides, many clinical studies have investigated the efficacy of TENS in patients with CNP (caused by spinal cord injury, stroke, or multiple sclerosis) and PNP (induced by diabetes, cancer, or herpes zoster). Most clinical trials have demonstrated the efficacy of TENS in attenuating neuropathic pain and suggested that appropriate stimulation parameters (e.g., stimulation frequency and intensity) were critical to improving the analgesic effects of TENS. However, there are some conflicting findings related to the efficacy of TENS in relieving neuropathic pain.

Summary

With optimized stimulation parameters, TENS would be effective in attenuating neuropathic pain. To obtain sufficient evidence to support the use of TENS in the clinic, researchers recommended performing multicenter clinical trials with optimized TENS protocols for the treatment of various CNP and PNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL, Bouhassira D, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016;157(8):1599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–19.

    PubMed  Google Scholar 

  3. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. LaMotte RH, Thalhammer JG, Torebjork H, Robinson CJ. Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J Neurosci. 1982;2(6):765–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng WW, Guo XL, Jin QQ, Wei H, Xia XL, Zhang Y, et al. Biological mechanism of post-herpetic neuralgia: evidence from multiple patho-psychophysiological measures. Eur J Pain. 2017;21(5):827–42.

    CAS  PubMed  Google Scholar 

  6. Baumann TK, Simone DA, Shain CN, LaMotte RH. Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J Neurophysiol. 1991;66(1):212–27.

    CAS  PubMed  Google Scholar 

  7. Simone DA, Sorkin L, Oh U, Chung J, Owens C, LaMotte R, et al. Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol. 1991;66(1):228–46.

    CAS  PubMed  Google Scholar 

  8. Maier C, Baron R, Tölle T, Binder A, Birbaumer N, Birklein F, et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150(3):439–50.

    CAS  PubMed  Google Scholar 

  9. Khedr EM, Kotb H, Kamel N, Ahmed M, Sadek R, Rothwell J. Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry. 2005;76(6):833–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158(2):261–72.

    PubMed  Google Scholar 

  11. Watson JC, Sandroni P. Central neuropathic pain syndromes. Mayo Clin Proc. 2016;91(3):372–85.

    PubMed  Google Scholar 

  12. Vranken JH. Elucidation of pathophysiology and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem. 2012;12(4):304–14.

    CAS  PubMed  Google Scholar 

  13. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73(4):638–52.

    Google Scholar 

  14. Attal N, Fermanian C, Fermanian J, Lantéri-Minet M, Alchaar H, Bouhassira D. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion? Pain. 2008;138(2):343–53.

    CAS  PubMed  Google Scholar 

  15. Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, et al. Towards a mechanism-based classification of pain? Pain. 1998;77(3):227–9.

    CAS  PubMed  Google Scholar 

  16. Max MB. Towards physiologically based treatment of patients with neuropathic pain. Pain. 1990;42(2):131–3.

    CAS  PubMed  Google Scholar 

  17. Hansson P. Difficulties in stratifying neuropathic pain by mechanisms. Eur J Pain. 2003;7(4):353–7.

    PubMed  Google Scholar 

  18. Hama A, Sagen J. Combination drug therapy for pain following chronic spinal cord injury. Pain Res Treat. 2012;2012:840486.

    PubMed  PubMed Central  Google Scholar 

  19. Katz J, Finnerup NB, Dworkin RH. Clinical trial outcome in neuropathic pain relationship to study characteristics. Neurology. 2008;70(4):263–72.

    PubMed  Google Scholar 

  20. •• Gibson W, Wand BM, O'Connell NE. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults. Cochrane Database Syst Rev. 2017;9:CD011976 A highly relevant review article on assessing the analgesic effectiveness of TENS in the management of neuropathic pain.

    PubMed  Google Scholar 

  21. Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109–21.

    PubMed  Google Scholar 

  22. Gossrau G, Wähner M, Kuschke M, Konrad B, Reichmann H, Wiedemann B, et al. Microcurrent transcutaneous electric nerve stimulation in painful diabetic neuropathy: a randomized placebo-controlled study. Pain Med. 2011;12(6):953–60.

    PubMed  Google Scholar 

  23. Jin D, Xu Y, Geng D, Yan T. Effect of transcutaneous electrical nerve stimulation on symptomatic diabetic peripheral neuropathy: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2010;89(1):10–5.

    PubMed  Google Scholar 

  24. Johnson MI, Paley CA, Howe TE, Sluka KA. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst Rev. 2015;6:CD006142.

    Google Scholar 

  25. Johnson MI, Bjordal JM. Transcutaneous electrical nerve stimulation for the management of painful conditions: focus on neuropathic pain. Expert Rev Neurother. 2011;11(5):735–53.

    PubMed  Google Scholar 

  26. DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 2008;10(6):492–9.

    PubMed  PubMed Central  Google Scholar 

  27. Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol. 2010;17(8):1010–8.

    CAS  PubMed  Google Scholar 

  28. Johnson MI. Transcutaneous electrical nerve stimulation: mechanisms, clinical application and evidence. Rev Pain. 2007;1(1):7–11.

    PubMed  PubMed Central  Google Scholar 

  29. Ersek RA. Transcutaneous electrical neurostimulation: a new therapeutic modality for controlling pain. Clin Orthop Relat Res. 1977;128:314–24.

    Google Scholar 

  30. Levin MF, Hui-Chan C. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol Evoked Potentials Section. 1992;85(2):131–42.

    CAS  PubMed  Google Scholar 

  31. Ng SS, Hui-Chan CW. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke. Stroke. 2007;38(11):2953–9.

    PubMed  Google Scholar 

  32. Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. 2001;298(1):257–63.

    CAS  PubMed  Google Scholar 

  33. Facchinetti F, Sandrini G, Petraglia F, Alfonsi E, Nappi G, Genazzani AR. Concomitant increase in nociceptive flexion reflex threshold and plasma opioids following transcutaneous nerve stimulation. Pain. 1984;19(3):295–303.

    CAS  PubMed  Google Scholar 

  34. Edmond CJ. Core curriculum for professional education in pain. Pain Med. 2005;8(4):392–3.

    Google Scholar 

  35. Tashani O, Johnson MI. Transcutaneous electrical nerve stimulation (TENS) a possible aid for pain relief in developing countries? Libyan J Med. 2009;4(2):62–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai H-C, Lin Y-W, Hsieh C-L. Acupuncture-analgesia-mediated alleviation of central sensitization. Evid Based Complement Alternat Med. 2019;2019:6173412.

    PubMed  PubMed Central  Google Scholar 

  37. Chesterton LS, Foster NE, Wright CC, Baxter GD, Barlas P. Effects of TENS frequency, intensity and stimulation site parameter manipulation on pressure pain thresholds in healthy human subjects. Pain. 2003;106(1–2):73–80.

    PubMed  Google Scholar 

  38. • Peng WW, Tang ZY, Zhang FR, Li H, Kong YZ, Iannetti GD, et al. Neurobiological mechanisms of TENS-induced analgesia. NeuroImage. 2019;195:396–408 An excellent research article investigating the neural mechanisms of the analgesic effects of both conventional TENS and acupuncture-like TENS, and highlighting the influence of electrode placement on TENS-induced analgesic effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. H-y C, Suh HR, Han HC. A single trial of transcutaneous electrical nerve stimulation reduces chronic neuropathic pain following median nerve injury in rats. Tohoku J Exp Med. 2014;232(3):207–14.

    Google Scholar 

  40. Sabino GS, Santos CM, Francischi JN, de Resende MA. Release of endogenous opioids following transcutaneous electric nerve stimulation in an experimental model of acute inflammatory pain. J Pain. 2008;9(2):157–63.

    CAS  PubMed  Google Scholar 

  41. Radhakrishnan R, King EW, Dickman JK, Herold CA, Johnston NF, Spurgin ML, et al. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain. 2003;105(1–2):205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones I, Johnson MI. Transcutaneous electrical nerve stimulation. Continuing Education in Anaesthesia. Crit Care Pain. 2009;9(4):130–5.

    Google Scholar 

  43. Askary Ashtiani AR, Ghiasi F, Noraie KM, Khodadadi Bohloli B. Effectiveness of action potential simulation and transcutaneous electrical nerve stimulation on pain and function of patients with chronic mechanical shoulder impairment. Phys Treat. 2016;6(2):79–84.

    Google Scholar 

  44. Kasat V, Gupta A, Ladda R, Kathariya M, Saluja H, Farooqui A-A. Transcutaneous electric nerve stimulation (TENS) in dentistry-a review. J Clin Exp Dent. 2014;6(5):e562–e8.

    PubMed  PubMed Central  Google Scholar 

  45. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    CAS  PubMed  Google Scholar 

  46. Garrison DW, Foreman RD. Effects of transcutaneous electrical nerve stimulation (TENS) on spontaneous and noxiously evoked dorsal horn cell activity in cats with transected spinal cords. Neurosci Lett. 1996;216(2):125–8.

    CAS  PubMed  Google Scholar 

  47. Woolf CJ, Barrett GD, Mitchell D, Myers RA. Naloxone-reversible peripheral electroanalgesia in intact and spinal rats. Eur J Pharmacol. 1977;45(3):311–4.

    CAS  PubMed  Google Scholar 

  48. Woolf CJ, Mitchell D, Barrett GD. Antinociceptive effect of peripheral segmental electrical stimulation in the rat. Pain. 1980;8(2):237–52.

    CAS  PubMed  Google Scholar 

  49. Sjölund BH. Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats: part 1: parameters of continuous stimulation. J Neurosurg. 1985;63(4):612–6.

    PubMed  Google Scholar 

  50. Liebano RE, Rakel B, Vance CGT, Walsh DM, Sluka KA. An investigation of the development of analgesic tolerance to TENS in humans. PAIN. 2011;152(2):335–42.

    PubMed  Google Scholar 

  51. Le Bars D, Willer JC, De Broucker T. Morphine blocks descending pain inhibitory controls in humans. Pain. 1992;48(1):13–20.

    PubMed  Google Scholar 

  52. Wutz A, Melcher D, Samaha J. Frequency modulation of neural oscillations according to visual task demands. Proc Natl Acad Sci. 2018;115(6):1346–51.

    CAS  PubMed  Google Scholar 

  53. Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cogn Sci. 2017;21(2):100–10.

    PubMed  PubMed Central  Google Scholar 

  54. Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain. 1996;67(2–3):231–40.

    CAS  PubMed  Google Scholar 

  55. Youssef AM, Macefield VG, Henderson LA. Pain inhibits pain; human brainstem mechanisms. Neuroimage. 2016;124:54–62.

    CAS  PubMed  Google Scholar 

  56. Sluka KA, Vance CG, Lisi TL. High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem. 2005;95(6):1794–801.

    CAS  PubMed  Google Scholar 

  57. Sluka KA, Deacon M, Stibal A, Strissel S, Terpstra A. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther. 1999;289(2):840–6.

    CAS  PubMed  Google Scholar 

  58. Vance CG, Dailey DL, Rakel BA, Sluka KA. Using TENS for pain control: the state of the evidence. Pain Manag. 2014;4(3):197–209.

    PubMed  PubMed Central  Google Scholar 

  59. King EW, Audette K, Athman GA, Nguyen HO, Sluka KA, Fairbanks CA. Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain. 2005;115(3):364–73.

    CAS  PubMed  Google Scholar 

  60. Nam TS, Choi Y, Yeon DS, Leem JW, Paik KS. Differential antinociceptive effect of transcutaneous electrical stimulation on pain behavior sensitive or insensitive to phentolamine in neuropathic rats. Neurosci Lett. 2001;301(1):17–20.

    CAS  PubMed  Google Scholar 

  61. Han J, Chen X, Sun S, Xu X, Yuan Y, Yan S, et al. Effect of low-and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain. 1991;47(3):295–8.

    CAS  PubMed  Google Scholar 

  62. DeSantana JM, Silva LD, Resende MD, Sluka KA. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience. 2009;163(4):1233–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maeda Y, Lisi T, Vance C, Sluka KA. Release of GABA and activation of GABAA in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136:43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Radhakrishnan R, Sluka KA. Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology. 2003;45(8):1111–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sluka KA, Lisi TL, Westlund KN. Increased release of serotonin in the spinal cord during low, but not high, frequency transcutaneous electric nerve stimulation in rats with joint inflammation. Arch Phys Med Rehabil. 2006;87(8):1137–40.

    PubMed  PubMed Central  Google Scholar 

  66. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120(11):3760–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. • Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 2017;21(6):28 A good review article summarizing the general etiologies and mechanisms of neuropathic pain.

    PubMed  Google Scholar 

  68. Tulder MV, Koes B, Bombardier C. Low back pain. Best Pract Res Clin Rheumatol. 2002;16(5):761–75.

    PubMed  Google Scholar 

  69. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630–5.

    CAS  PubMed  Google Scholar 

  70. Tesfaye S, Boulton AJ, Dickenson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care. 2013;36(9):2456–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract. 2000;47(2):123–8.

    CAS  PubMed  Google Scholar 

  72. Somers DL, Somers MF. Treatment of neuropathic pain in a patient with diabetic neuropathy using transcutaneous electrical nerve stimulation applied to the skin of the lumbar region. Phys Ther. 1999;79(8):767–75.

    CAS  PubMed  Google Scholar 

  73. Kumar D, Alvaro MS, Julka IS, Marshall HJ. Diabetic peripheral neuropathy. Effectiveness of electrotherapy and amitriptyline for symptomatic relief. Diabetes Care. 1998;21(8):1322–5.

    CAS  PubMed  Google Scholar 

  74. Hamza MA, White PF, Craig WF, Ghoname ES, Ahmed HE, Proctor TJ, et al. Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care. 2000;23(3):365–70.

    CAS  PubMed  Google Scholar 

  75. Forst T, Nguyen M, Forst S, Disselhoff B, Pohlmann T, Pfützner A. Impact of low frequency transcutaneous electrical nerve stimulation on symptomatic diabetic neuropathy using the new Salutaris device. Diabetes Nutr Metab. 2004;17(3):163–8.

    CAS  PubMed  Google Scholar 

  76. Naderi Nabi B, Sedighinejad A, Haghighi M, Biazar G, Hashemi M, Haddadi S, et al. Comparison of transcutaneous electrical nerve stimulation and pulsed radiofrequency sympathectomy for treating painful diabetic neuropathy. Anesth Pain Med. 2015;5(5):e29280.

    PubMed  PubMed Central  Google Scholar 

  77. Pieber K, Herceg M, Paternostro-Sluga T. Electrotherapy for the treatment of painful diabetic peripheral neuropathy: a review. J Rehabil Med. 2010;42(4):289–95.

    PubMed  Google Scholar 

  78. Dubinsky RM, Miyasaki J. Assessment: efficacy of transcutaneous electric nerve stimulation in the treatment of pain in neurologic disorders (an evidence-based review) report of the therapeutics and technology assessment Subcommittee of the American Academy of neurology. Neurology. 2010;74(2):173–6.

    PubMed  Google Scholar 

  79. Bennett MI, Clare R, Marianne H, Nina A, Augusto C, Stein K. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain. 2012;153(2):359–65.

    PubMed  Google Scholar 

  80. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81.

    PubMed  PubMed Central  Google Scholar 

  81. Robb KA, Bennett MI, Johnson MI, Simpson KJ, Oxberry SG. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults. Cochrane Database Syst Rev. 2008;3:CD006276.

    Google Scholar 

  82. Hurlow A, Bennett MI, Robb KA, Johnson MI, Simpson KH, Oxberry SG. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults. Cochrane Database Syst Rev. 2012;3:CD006276.

    Google Scholar 

  83. Searle RD, Bennett MI, Johnson MI, Callin S, Radford H. Transcutaneous electrical nerve stimulation (TENS) for cancer bone pain. J Pain Symptom Manag. 2009;37(3):424–8.

    Google Scholar 

  84. Loh J, Gulati A. The use of transcutaneous electrical nerve stimulation (tens) in a major cancer center for the treatment of severe cancer-related pain and associated disability. Pain Med. 2015;16(6):1204–10.

    PubMed  Google Scholar 

  85. Gewandter JS, Chaudari J, Ibegbu C, Kitt R, Serventi J, Burke J, et al. Wireless transcutaneous electrical nerve stimulation device for chemotherapy-induced peripheral neuropathy: an open-label feasibility study. Support Care Cancer. 2018;27(5):1765–74.

    PubMed  Google Scholar 

  86. Dworkin RH, Schmader KE, Goldstein EJC. Treatment and prevention of postherpetic neuralgia. Clin Infect Dis. 2003;36(7):877–82.

    PubMed  Google Scholar 

  87. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis. 2004;4(1):26–33.

    PubMed  Google Scholar 

  88. Mélanie D, Marc B, Schmader KE, Levin MJ, Robert J, Oxman MN, et al. The impact of herpes zoster and postherpetic neuralgia on health-related quality of life: a prospective study. Can Med Assoc J. 2010;182(16):1731–6.

    Google Scholar 

  89. Mittal A, Masuria B, Bajaj P. Transcutaneous electrical nerve stimulation in treatment of post herpetic neuralgia. Indian J Dermatol Venereol Leprol. 1998;64(1):45.

    CAS  PubMed  Google Scholar 

  90. Kolsek M. TENS-an alternative to antiviral drugs for acute herpes zoster treatment and postherpetic neuralgia prevention. Swiss Med Wkly. 2012;141:w13229.

    PubMed  Google Scholar 

  91. Barbarisi M, Pace MC, Passavanti MB, Maisto M, Mazzariello L, Pota V, et al. Pregabalin and transcutaneous electrical nerve stimulation for postherpetic neuralgia treatment. Clin J Pain. 2010;26(7):567–72.

    PubMed  Google Scholar 

  92. Stepanović A, Kolšek M, Kersnik J, Erčulj V. Prevention of post-herpetic neuralgia using transcutaneous electrical nerve stimulation. Wien Klin Wochenschr. 2015;127(9-10):369–74.

  93. Borsook D. Neurological diseases and pain. Brain. 2011;135(part 2):320–44.

    PubMed  PubMed Central  Google Scholar 

  94. Boldt I, Eriks-Hoogland I, Brinkhof MW, de Bie R, Joggi D, von Elm E. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014;11:CD009177.

    Google Scholar 

  95. Ochsner KN, Zaki J, Hanelin J, Ludlow DH, Knierim K, Ramachandran T, et al. Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc Cogn Affect Neurosci. 2008;3(2):144–60.

    PubMed  PubMed Central  Google Scholar 

  96. Casey B, Uszynski M, Hayes S, Motl R, Gallagher S, Coote S. Do multiple sclerosis symptoms moderate the relationship between self-efficacy and physical activity in people with multiple sclerosis? Rehabil Psychol. 2018;63(1):104–10.

    PubMed  Google Scholar 

  97. Osterberg A, Boivie J, Thuomas KA. Central pain in multiple sclerosis--prevalence and clinical characteristics. Eur J Pain. 2005;9(5):531–42.

    CAS  PubMed  Google Scholar 

  98. Miller L, Mattison P, Paul L, Wood L. The effects of transcutaneous electrical nerve stimulation (TENS) on spasticity in multiple sclerosis. Mult Scler. 2007;13(4):527–33.

    CAS  PubMed  Google Scholar 

  99. Warke K, Al-Smadi J, Baxter D, Walsh DM, Lowe-Strong AS. Efficacy of transcutaneous electrical nerve stimulation (tens) for chronic low-back pain in a multiple sclerosis population: a randomized, placebo-controlled clinical trial. Clin J Pain. 2006;22(9):812–9.

    PubMed  Google Scholar 

  100. Mann R, Schaefer C, Sadosky A, Bergstrom F, Baik R, Parsons B, et al. Burden of spinal cord injury-related neuropathic pain in the United States: retrospective chart review and cross-sectional survey. Spinal Cord. 2013;51(7):564–70.

    CAS  PubMed  Google Scholar 

  101. Norrbrink C. Transcutaneous electrical nerve stimulation for treatment of spinal cord injury neuropathic pain. J Rehabil Res Dev. 2009;46(1):85–94.

    PubMed  Google Scholar 

  102. Celik EC, Erhan B, Gunduz B, Lakse E. The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury. Spinal Cord. 2013;51(4):334–7.

    CAS  PubMed  Google Scholar 

  103. Ozkul C, Kilinc M, Yildirim SA, Topcuoglu EY, Akyuz M. Effects of visual illusion and transcutaneous electrical nerve stimulation on neuropathic pain in patients with spinal cord injury: a randomised controlled cross-over trial. J Back Musculoskelet Rehabil. 2015;28(4):709–19.

    PubMed  Google Scholar 

  104. Bowsher D. Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatry. 1996;61(1):62–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain. 1995;61(2):187–93.

    CAS  PubMed  Google Scholar 

  106. Bowsher D, Vantrappen G, Mabey DD, Treasure T, Woods DK, Arend WP. Cerebrovascular disease: Sensory consequences of stroke. Lancet. 1993;341(8838):156.

    CAS  PubMed  Google Scholar 

  107. Leijon G, Boivie J. Central post-stroke pain-the effect of high and low frequency TENS. Pain. 1989;38(2):187–91.

    CAS  PubMed  Google Scholar 

  108. Price CI, Pandyan A. Electrical stimulation for preventing and treating post-stroke shoulder pain: a systematic Cochrane review. Clin Rehabil. 2001;15(1):5–19.

    CAS  PubMed  Google Scholar 

  109. Vuagnat H, Chantraine A. Shoulder pain in hemiplegia revisited: contribution of functional electrical stimulation and other therapies. J Rehabil Med. 2003;35(2):49–56.

    PubMed  Google Scholar 

  110. Kilinc M, Livanelioglu A, Yildirim SA, Tan E. Effects of transcutaneous electrical nerve stimulation in patients with peripheral and central neuropathic pain. J Rehabil Med. 2014;46(5):454–60.

    PubMed  Google Scholar 

  111. Lee JE, Anderson CM, Perkhounkova Y, Sleeuwenhoek BM, Louison RR. Transcutaneous electrical nerve stimulation reduces resting pain in head and neck cancer patients: a randomized and placebo-controlled double-blind pilot study. Cancer Nurs. 2019;42(3):218–28.

    PubMed  Google Scholar 

  112. Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RL. Long-term TENS treatment improves tactile sensitivity in MS patients. Neurorehabil Neural Repair. 2010;24(5):420–7.

    PubMed  Google Scholar 

  113. Bi X, Lv H, Chen BL, Li X, Wang XQ. Effects of transcutaneous electrical nerve stimulation on pain in patients with spinal cord injury: a randomized controlled trial. J Phys Ther Sci. 2015;27(1):23–5.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31671141, 31822025, 31800926), the 13th Five-year Informatization Plan of Chinese Academy of Sciences (No. XXH13506), the Project funded by China Postdoctoral Science Foundation (No. 2018M640191), the Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences (No. Y6CX021008, Y8CX351005), and CAS Key Laboratory of Mental Health, Institute of Psychology (No. KLMH2018ZG01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Bi.

Ethics declarations

Conflict of Interest

Tahmineh Mokhtari, Qiaoyue Ren, Nuo Li, Faguang Wang, Yanzhi Bi, and Li Hu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Other Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, T., Ren, Q., Li, N. et al. Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications. Curr Pain Headache Rep 24, 14 (2020). https://doi.org/10.1007/s11916-020-0846-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-020-0846-1

Keywords

Navigation