Skip to main content

Advertisement

Log in

Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss.

Recent Findings

Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication.

Summary

This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. https://doi.org/10.1146/annurev-physiol-021119-034332.

    Article  CAS  PubMed  Google Scholar 

  2. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34. https://doi.org/10.1007/s00223-013-9774-y.

    Article  CAS  PubMed  Google Scholar 

  3. Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int. 2008;28(4):317–21. https://doi.org/10.1007/s00296-007-0452-0.

    Article  CAS  PubMed  Google Scholar 

  4. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clinical cases in mineral and bone metabolism : the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases. 2017;14(2):209–16. doi: https://doi.org/10.11138/ccmbm/2017.14.1.209.

  5. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468–77. https://doi.org/10.1016/j.molmed.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  6. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev. 2016;2016:3164734–23. https://doi.org/10.1155/2016/3164734.

    Article  CAS  Google Scholar 

  7. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Current biology : CB. 2014;24(10):R453–62. https://doi.org/10.1016/j.cub.2014.03.034.

    Article  CAS  PubMed  Google Scholar 

  8. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163(3):560–9. https://doi.org/10.1016/j.cell.2015.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–85. https://doi.org/10.1016/j.redox.2015.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta. 2012;1818(8):1909–18. https://doi.org/10.1016/j.bbamem.2011.09.018.

    Article  CAS  PubMed  Google Scholar 

  11. Stains JP, Civitelli R. Connexins in the skeleton. Semin Cell Dev Biol. 2016;50:31–9. https://doi.org/10.1016/j.semcdb.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  12. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151(4):931–44. https://doi.org/10.1083/jcb.151.4.931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2008;23(11):1712–21. https://doi.org/10.1359/jbmr.080617.

    Article  CAS  Google Scholar 

  14. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012;27(2):374–89. https://doi.org/10.1002/jbmr.548.

    Article  CAS  Google Scholar 

  15. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell. 2011;22(8):1240–51. https://doi.org/10.1091/mbc.E10-07-0571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4(4):285–94. https://doi.org/10.1038/nrm1072.

    Article  CAS  PubMed  Google Scholar 

  17. Plotkin LI. Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol. 2014;5:131. https://doi.org/10.3389/fphys.2014.00131.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16(7):3100–6. https://doi.org/10.1091/mbc.E04-10-0912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H, et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2015;30(3):436–48. https://doi.org/10.1002/jbmr.2374.

    Article  CAS  Google Scholar 

  20. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. https://doi.org/10.1146/annurev.bi.65.070196.002355.

    Article  CAS  PubMed  Google Scholar 

  21. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV. Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta. 2005;1711(2):215–24. https://doi.org/10.1016/j.bbamem.2005.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orellana JA, Diaz E, Schalper KA, Vargas AA, Bennett MV, Saez JC. Cation permeation through connexin 43 hemichannels is cooperative, competitive and saturable with parameters depending on the permeant species. Biochem Biophys Res Commun. 2011;409(4):603–9. https://doi.org/10.1016/j.bbrc.2011.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol. 2004;36(7):1171–86. https://doi.org/10.1016/S1357-2725(03)00264-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laird DW. Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta. 2005;1711(2):172–82. https://doi.org/10.1016/j.bbamem.2004.09.009.

    Article  CAS  PubMed  Google Scholar 

  25. Giardina SF, Mikami M, Goubaeva F, Yang J. Connexin 43 confers resistance to hydrogen peroxide-mediated apoptosis. Biochem Biophys Res Commun. 2007;362(3):747–52. https://doi.org/10.1016/j.bbrc.2007.08.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hutnik CM, Pocrnich CE, Liu H, Laird DW, Shao Q. The protective effect of functional connexin43 channels on a human epithelial cell line exposed to oxidative stress. Invest Ophthalmol Vis Sci. 2008;49(2):800–6. https://doi.org/10.1167/iovs.07-0717.

    Article  PubMed  Google Scholar 

  27. Kar R, Riquelme MA, Werner S, Jiang JX. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2013;28(7):1611–21. https://doi.org/10.1002/jbmr.1917.

    Article  CAS  Google Scholar 

  28. Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One. 2007;2(8):e712. https://doi.org/10.1371/journal.pone.0000712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma JW, Ji DD, Li QQ, Zhang T, Luo L. Inhibition of connexin 43 attenuates oxidative stress and apoptosis in human umbilical vein endothelial cells. BMC Pulm Med. 2020;20(1):19. https://doi.org/10.1186/s12890-019-1036-y.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shi W, Riquelme MA, Gu S, Jiang JX. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress. Journal of cell science. 2018;131(6). doi: https://doi.org/10.1242/jcs.212506.

  31. Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, et al. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal. 2011;14(12):2427–39. https://doi.org/10.1089/ars.2010.3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmad Waza A, Ahmad Bhat S, Ul Hussain M, Ganai BA. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res. 2018;371(2):213–22. https://doi.org/10.1007/s00441-017-2736-3.

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res. 2006;99(1):93–101. https://doi.org/10.1161/01.RES.0000230315.56904.de.

    Article  CAS  PubMed  Google Scholar 

  34. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, et al. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol. 2007;292(4):H1764–9. https://doi.org/10.1152/ajpheart.01071.2006.

    Article  CAS  PubMed  Google Scholar 

  35. Tu RH, Li QJ, Huang Z, He Y, Meng JJ, Zheng HL, et al. Novel functional role of heat shock protein 90 in mitochondrial connexin 43-mediated hypoxic postconditioning. Cell Physiol Biochem. 2017;44(3):982–97. https://doi.org/10.1159/000485399.

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Meana M, Nunez E, Miro-Casas E, Martinez-Acedo P, Barba I, Rodriguez-Sinovas A, et al. Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J Mol Cell Cardiol. 2014;68:79–88. https://doi.org/10.1016/j.yjmcc.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  37. Waza AA, Andrabi K, Hussain MU. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K+ (ATP) channel subunit (Kir6. 1) in cardiomyocyte mitochondria: implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 2014;26(9):1909–17.

    Article  CAS  Google Scholar 

  38. Le HT, Sin WC, Lozinsky S, Bechberger J, Vega JL, Guo XQ, et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J Biol Chem. 2014;289(3):1345–54. https://doi.org/10.1074/jbc.M113.508390.

    Article  CAS  PubMed  Google Scholar 

  39. Orellana JA, Hernandez DE, Ezan P, Velarde V, Bennett MV, Giaume C, et al. Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels. Glia. 2010;58(3):329–43. https://doi.org/10.1002/glia.20926.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chi Y, Zhang X, Zhang Z, Mitsui T, Kamiyama M, Takeda M, et al. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol. 2016;9:198–209. https://doi.org/10.1016/j.redox.2016.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest. 2010;120(1):266–79. https://doi.org/10.1172/JCI39740.

    Article  CAS  PubMed  Google Scholar 

  42. Riquelme MA, Jiang JX. Elevated intracellular Ca(2+) signals by oxidative stress activate connexin 43 hemichannels in osteocytes. Bone research. 2013;1(4):355–61. https://doi.org/10.4248/BR201304006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Riquelme MA, Kar R, Gu S, Jiang JX. Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology. 2013;75:525–32. https://doi.org/10.1016/j.neuropharm.2013.02.021.

    Article  CAS  PubMed  Google Scholar 

  44. Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem. 2008;283(39):26374–82. https://doi.org/10.1074/jbc.M803136200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97. https://doi.org/10.1074/jbc.M702810200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD, et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI insight. 2017;2(17). doi: https://doi.org/10.1172/jci.insight.93771.

  47. Shum LC, White NS, Nadtochiy SM, Bentley KL, Brookes PS, Jonason JH, et al. Cyclophilin D Knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS One. 2016;11(5):e0155709. https://doi.org/10.1371/journal.pone.0155709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kobayashi K, Nojiri H, Saita Y, Morikawa D, Ozawa Y, Watanabe K, et al. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep. 2015;5:9148. https://doi.org/10.1038/srep09148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51. https://doi.org/10.1021/nn401360u.

    Article  CAS  PubMed  Google Scholar 

  50. Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone. 2019;122:101–13. https://doi.org/10.1016/j.bone.2019.01.025.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, et al. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging. 2017;9(10):2190–208. doi: https://doi.org/10.18632/aging.101308.

  52. Riquelme MA, Cardenas ER, Xu H, Jiang JX. The role of connexin channels in the response of mechanical loading and unloading of bone. International journal of molecular sciences. 2020;21(3). doi: https://doi.org/10.3390/ijms21031146.

  53. Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, et al. Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR plus. 2018;2(4):206–16. doi: https://doi.org/10.1002/jbm4.10035. This study indicates that overexpression of Cx43 primarily in osteocytes using DMP1-cre preserves osteocyte viability and cortical bone phenotype, and prevents changes of bone remodeling and circulating markers during aging process.

  54. Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, et al. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell. 2017;16(3):551–63. https://doi.org/10.1111/acel.12586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62. https://doi.org/10.1056/NEJMcp1513724.

    Article  CAS  PubMed  Google Scholar 

  56. Sendur OF, Turan Y, Tastaban E, Serter M. Antioxidant status in patients with osteoporosis: a controlled study. Joint bone spine. 2009;76(5):514–8. https://doi.org/10.1016/j.jbspin.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  57. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clinica chimica acta; international journal of clinical chemistry. 2005;360(1–2):81–6. doi: https://doi.org/10.1016/j.cccn.2005.04.014.

  58. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest. 2003;112(6):915–23. https://doi.org/10.1172/JCI18859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ucer S, Iyer S, Kim HN, Han L, Rutlen C, Allison K, et al. The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2017;32(3):560–74. https://doi.org/10.1002/jbmr.3014.

    Article  CAS  Google Scholar 

  60. Mann V, Huber C, Kogianni G, Collins F, Noble B. The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone. 2007;40(3):674–84. https://doi.org/10.1016/j.bone.2006.10.014.

    Article  CAS  PubMed  Google Scholar 

  61. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300. https://doi.org/10.1210/er.2009-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi C, Wu J, Yan Q, Wang R, Miao D. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism. Bone. 2015;79:94–104. https://doi.org/10.1016/j.bone.2015.05.034.

    Article  CAS  PubMed  Google Scholar 

  63. Deepak V, Kayastha P, McNamara LM. Estrogen deficiency attenuates fluid flow-induced [Ca(2+)]i oscillations and mechanoresponsiveness of MLO-Y4 osteocytes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2017;31(7):3027–39. doi: https://doi.org/10.1096/fj.201601280R. This study shows that estrogen regulates the mechanosensitivity of osteocytes. Estrogen withdrawl or inhibition of estrogen receptor blunts intracellular Ca2+ oscillations, NO, and PGE2 release induced by oscillatory fluid flow in MLO-Y4 cells.

  64. Ren J, Wang XH, Wang GC, Wu JH. 17beta estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells. Bone. 2013;53(2):587–96. https://doi.org/10.1016/j.bone.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, et al. PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology. 2001;142(8):3464–73. https://doi.org/10.1210/endo.142.8.8338.

    Article  CAS  PubMed  Google Scholar 

  66. Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012;27(3):563–74. https://doi.org/10.1002/jbmr.1474.

    Article  CAS  Google Scholar 

  67. McGarry JG, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun. 2005;330(1):341–8. https://doi.org/10.1016/j.bbrc.2005.02.175.

    Article  CAS  PubMed  Google Scholar 

  68. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2001;16(2):249–59. https://doi.org/10.1359/jbmr.2001.16.2.249.

    Article  CAS  Google Scholar 

  69. Ma L, Hua R, Tian Y, Cheng H, Fajardo RJ, Pearson JJ, et al. Connexin 43 hemichannels protect bone loss during estrogen deficiency. Bone research. 2019;7:11. https://doi.org/10.1038/s41413-019-0050-2. This study demonstrates the decreased connexin 43 expression and hemichannels activity under estrogen withdrawal condition in MLO-Y4 cells and the protective role of osteocytic connexin 43 hemichannels against ovariectomy induced bone loss and oxidative stress.

  70. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. doi: https://doi.org/10.1007/s12020-018-1588-2.

  71. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O'Brien CA, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9(2):147–61. https://doi.org/10.1111/j.1474-9726.2009.00545.x.

    Article  CAS  PubMed  Google Scholar 

  72. Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC. Glucocorticoids and tumor necrosis factor alpha increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem. 2011;286(52):44326–35. https://doi.org/10.1074/jbc.M111.283481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tolba MF, El-Serafi AT, Omar HA. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: impact on oxidative stress and RANKL/OPG signals. Toxicol Appl Pharmacol. 2017;324:26–35. https://doi.org/10.1016/j.taap.2017.03.021.

    Article  CAS  PubMed  Google Scholar 

  74. Lin H, Gao X, Chen G, Sun J, Chu J, Jing K, et al. Indole-3-carbinol as inhibitors of glucocorticoid-induced apoptosis in osteoblastic cells through blocking ROS-mediated Nrf2 pathway. Biochem Biophys Res Commun. 2015;460(2):422–7. https://doi.org/10.1016/j.bbrc.2015.03.049.

    Article  CAS  PubMed  Google Scholar 

  75. Xia X, Kar R, Gluhak-Heinrich J, Yao W, Lane NE, Bonewald LF, et al. Glucocorticoid-induced autophagy in osteocytes. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2010;25(11):2479–88. https://doi.org/10.1002/jbmr.160.

    Article  CAS  Google Scholar 

  76. Yao W, Dai W, Jiang JX, Lane NE. Glucocorticoids and osteocyte autophagy. Bone. 2013;54(2):279–84. https://doi.org/10.1016/j.bone.2013.01.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kar R, Riquelme MA, Hua R, Jiang JX. Glucocorticoid-induced autophagy protects osteocytes against oxidative stress through activation of MAPK/ERK signaling. JBMR plus. 2019;3(4):e10077. doi: https://doi.org/10.1002/jbm4.10077. This study reveals a novel mechanism showing that moderated levels of glucocorticoids leads to autophagy, which pre-conditions the osteocytes and conveys cell-protective function against oxidative stress induced cell death.

  78. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2006;21(3):466–76. https://doi.org/10.1359/JBMR.051103.

    Article  CAS  Google Scholar 

  79. Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282(33):24120–30. https://doi.org/10.1074/jbc.M611435200.

    Article  CAS  PubMed  Google Scholar 

  80. Gao J, Cheng TS, Qin A, Pavlos NJ, Wang T, Song K, et al. Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget. 2016;7(19):26966–78. doi: https://doi.org/10.18632/oncotarget.9034. This study suggests that glucocorticoids treatment reduces osteocytic dendritic processes and connexin 43 expression. The decrease of Cx43 is caused by protein internalization by autophagosome/autolysosomes.

  81. Shen C, Kim MR, Noh JM, Kim SJ, Ka SO, Kim JH, et al. Glucocorticoid suppresses connexin 43 expression by inhibiting the Akt/mTOR signaling pathway in osteoblasts. Calcif Tissue Int. 2016;99(1):88–97. https://doi.org/10.1007/s00223-016-0121-y.

    Article  CAS  PubMed  Google Scholar 

  82. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 2002;277(10):8648–57. https://doi.org/10.1074/jbc.M108625200.

    Article  CAS  PubMed  Google Scholar 

  83. Balboa E, Saavedra F, Cea LA, Ramirez V, Escamilla R, Vargas AA, et al. Vitamin E blocks connexin hemichannels and prevents deleterious effects of glucocorticoid treatment on skeletal muscles. International journal of molecular sciences. 2020;21(11). doi: https://doi.org/10.3390/ijms21114094.

Download references

Acknowledgments

We thank Dr. Eduardo Cardenas at UTHSCSA for critical reading and editing of the paper.

Funding

This work was supported by the National Institutes of Health (NIH) (grant: AR072072) and Welch Foundation (grant: AQ-1507) (to J.X.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean X. Jiang.

Ethics declarations

Conflict of Interest

Rui Hua, Jingruo Zhang, Manuel A. Riquelme, and Jean X. Jiang declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, R., Zhang, J., Riquelme, M.A. et al. Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Curr Osteoporos Rep 19, 66–74 (2021). https://doi.org/10.1007/s11914-020-00645-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00645-9

Keywords

Navigation