Skip to main content

Advertisement

Log in

The Bone Microenvironment: a Fertile Soil for Tumor Growth

  • Osteoporosis and Cancer (M Nanes and M Drake, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone metastatic disease remains a significant and frequent problem for cancer patients that can lead to increased morbidity and mortality. Unfortunately, despite decades of research, bone metastases remain incurable. Current studies have demonstrated that many properties and cell types within the bone and bone marrow microenvironment contribute to tumor-induced bone disease. Furthermore, they have pointed to the importance of understanding how tumor cells interact with their microenvironment in order to help improve both the development of new therapeutics and the prediction of response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  3. Guise TA, Mundy GR. Cancer and bone. Endocr Rev. 1998;19(1):18–54.

    CAS  PubMed  Google Scholar 

  4. Johnson RW et al. TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res. 2011;71(3):822–31.

    Article  CAS  PubMed  Google Scholar 

  5. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  CAS  PubMed  Google Scholar 

  6. Coleman R et al. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25 Suppl 3:iii 124-37.

    Article  Google Scholar 

  7. Coleman R et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997–1006.

    Article  CAS  PubMed  Google Scholar 

  8. Holen I, Coleman RE. Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res. 2010;12(6):214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  10. Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92.

    Article  CAS  PubMed  Google Scholar 

  11. Kostic A, Lynch CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One. 2009;4(7):e6361.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Provenzano PP et al. Matrix density-induced mechanoregulation of breast cell phenotype, signaling, and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Page JM et al. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin beta3 and TGF-beta receptor type II. Biomaterials. 2015;64:33–44. This paper demonstrated that the rigid mineralized bone matrix can alter gene expression and bone destruction in an integrin beta 3-TGF-β dependent manner.

    Article  CAS  PubMed  Google Scholar 

  14. Ruppender NS et al. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One. 2010;5(11):e15451.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson RW et al. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 2014.

  16. Guo R et al. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials. 2015;54:21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guise TA et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schneider A et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005;146(4):1727–36.

    Article  CAS  PubMed  Google Scholar 

  21. Taichman RS et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.

    CAS  PubMed  Google Scholar 

  22. Sun X et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29(4):709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung Y et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood. 2007;110(1):82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung Y et al. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia. 2012;14(5):429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung Y et al. Annexin 2 is a regulator of SDF-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol. 2011;39(2):151–166.e1.

    Article  CAS  PubMed  Google Scholar 

  26. Park, SI et al. Parathyroid hormone-related protein drives a CD11b(+)Gr1(+) cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res, 2013; 73(22), doi:10.1158/0008-5472.CAN-12-4692.

  27. Akeno N et al. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143(2):420–5.

    CAS  PubMed  Google Scholar 

  28. Kim JM et al. DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nat Commun. 2012;3:1296.

    Article  PubMed  Google Scholar 

  29. Boyce BF, Schwarz EM, Xing L. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr Opin Rheumatol. 2006;18(4):427–32. doi:10.1097/01.bor.0000231913.32364.32.

    Article  CAS  PubMed  Google Scholar 

  30. Glass 2nd DA et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.

    Article  CAS  PubMed  Google Scholar 

  31. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  32. Crockett JC et al. Bone remodelling at a glance. J Cell Sci. 2011;124(7):991–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hirbe AC et al. Disruption of CXCR4 enhances osteoclastogenesis and tumor growth in bone. Proc Natl Acad Sci U S A. 2007;104(35):14062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou JZ et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2015;34(14):1831–42.

    Article  CAS  PubMed  Google Scholar 

  35. Sottnik JL et al. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015;75(11):2151–8. This paper presents data identifying the contribution of physical forces to tumor cell growth and that osteocytes play an important role as mediators in the bone metastatic niche.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Delgado-Calle J et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089–100.

    Article  CAS  PubMed  Google Scholar 

  37. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duda DG et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A. 2010;107(50):21677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calvo F et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.

    Article  CAS  PubMed  Google Scholar 

  40. Harper J, Sainson RC. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol. 2014;25:69–77.

    Article  CAS  PubMed  Google Scholar 

  41. Kraman M et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30.

    Article  CAS  PubMed  Google Scholar 

  42. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29(2):249–61.

    Article  PubMed  Google Scholar 

  43. Quante M et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bergfeld SA, Blavier L, DeClerck YA. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13(4):962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu HC et al. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer. 1994;57(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  46. Li X et al. Loss of TGF-beta responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res. 2012;10(4):494–503.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nakamura R et al. Transforming growth factor-beta synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun. 2015;458(4):777–82.

    Article  CAS  PubMed  Google Scholar 

  48. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.

    Article  CAS  PubMed  Google Scholar 

  50. Deng L et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol. 2010;176(2):952–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008;84(3):623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biswas SK et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.

    Article  CAS  PubMed  Google Scholar 

  54. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  55. Chang MK et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.

    Article  CAS  PubMed  Google Scholar 

  56. Winkler IG et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.

    Article  CAS  PubMed  Google Scholar 

  57. Alexander KA et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517–32.

    Article  CAS  PubMed  Google Scholar 

  58. Buenrostro D, Park SI, Sterling JA. Dissecting the role of bone marrow stromal cells on bone metastases. Biomed Res Int. 2014;2014:875305.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–64. This paper reviews controversial issues in myeloid-derived suppressor cell biology, including their role in cancer progression and metastasis. This review also emphasis how these cells may be used both as prognostic factors and as therapeutic targets.

    Article  PubMed  Google Scholar 

  60. Youn JI et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181(8):5791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Movahedi K et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111(8):4233–44.

    Article  CAS  PubMed  Google Scholar 

  62. Huang B et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.

    Article  CAS  PubMed  Google Scholar 

  63. Elkabets M et al. IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Srivastava MK et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  65. Lindau D et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138(2):105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park SI et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73(22):6574–83.

    Article  CAS  PubMed  Google Scholar 

  67. Danilin S et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 2012;1(9):1484–94.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sawant A et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013;73(2):672–82. This paper identified myeloid-derived suppressor cells as a novel osteoclast progenitor that had the potential to stimulate bone metastasis during cancer progression.

    Article  CAS  PubMed  Google Scholar 

  69. Vivier E et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  70. Diefenbach A et al. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature. 2001;413(6852):165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu G et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest. 2013;123(10):4410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zitvogel L, Kroemer G. Cancer: antibodies regulate antitumour immunity. Nature. 2015;521(7550):35–7.

    Article  CAS  PubMed  Google Scholar 

  73. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.

    Article  CAS  PubMed  Google Scholar 

  74. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.

    Article  CAS  PubMed  Google Scholar 

  75. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    Article  CAS  PubMed  Google Scholar 

  76. Balkwill F, Montfort A, Capasso M. B regulatory cells in cancer. Trends Immunol. 2013;34(4):169–73.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang K et al. CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res. 2011;71(14):4799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monteiro AC et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 2013;8(7):e68171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pasquier E et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2(10):797–809.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ji Y et al. The role of β-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div. 2013;8:1–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thaker PH et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.

    Article  CAS  PubMed  Google Scholar 

  82. Thaker PH, Sood AK. The neuroendocrine impact of chronic stress on cancer. Semin Cancer Biol. 2008;18(3):164–70.

    Article  CAS  PubMed  Google Scholar 

  83. Chida Y et al. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5(8):466–75.

    Article  PubMed  Google Scholar 

  84. Palesh O et al. Stress history and breast cancer recurrence. J Psychosom Res. 2007;63(3):233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Melhem-Bertrandt A et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol. 2011;29(19):2645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elefteriou F et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.

    Article  CAS  PubMed  Google Scholar 

  87. Campbell JP et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Costa L et al. Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. Support Care Cancer. 2008;16(8):879–89.

    Article  PubMed  Google Scholar 

  89. Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.

    Article  PubMed  Google Scholar 

  90. Clohisy DR and PW Mantyh. Bone cancer pain. Clin Orthop Relat Res, 2003, (415 Suppl): 279-88.

  91. Halvorson KG et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 2005;65(20):9426–35.

    Article  CAS  PubMed  Google Scholar 

  92. Falk S et al. P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience. 2015;291:93–105.

    Article  CAS  PubMed  Google Scholar 

  93. Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  94. Smith MR et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.

    Article  CAS  PubMed  Google Scholar 

  95. Le Gall C et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res. 2007;67(20):9894–902.

    Article  PubMed  Google Scholar 

  96. Chavez-Macgregor M et al. Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res. 2005;11(15):5396–400.

    Article  CAS  PubMed  Google Scholar 

  97. Kopp H-G et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology. 2005;20(5):349–56.

    Article  CAS  PubMed  Google Scholar 

  98. Ghajar CM et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. This paper provides evidence for a link between the vascular and tumor dormancy, a subject that had not been well studied.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Sterling.

Ethics declarations

Conflict of Interest

Denise Buenrostro, Patrick L. Mulcrone, Philip Owens, and Julie A. Sterling declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

With regard to the authors’ research cited in this paper, all institutional and national guidelines for the care and use of laboratory animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Osteoporosis and Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buenrostro, D., Mulcrone, P.L., Owens, P. et al. The Bone Microenvironment: a Fertile Soil for Tumor Growth. Curr Osteoporos Rep 14, 151–158 (2016). https://doi.org/10.1007/s11914-016-0315-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0315-2

Keywords

Navigation