Skip to main content

Advertisement

Log in

Synovial Joints: from Development to Homeostasis

  • Skeletal Development (E Schanipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  2. Ikegawa S. Genetic analysis of skeletal dysplasia: recent advances and perspectives in the post-genome-sequence era. J Hum Genet. 2006;51(7):581–6.

    Article  PubMed  Google Scholar 

  3. Pauli RM. The natural histories of bone dysplasias in adults—vignettes, fables and just-so stories. Am J Med Genet C: Semin Med Genet. 2007;145C(3):309–21.

    Article  Google Scholar 

  4. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.

    Article  PubMed  CAS  Google Scholar 

  5. Hunter DJ. In the clinic. Osteoarthritis. Ann Intern Med. 2007;147(3):ITC8. -1-ITC8-16.

    PubMed  Google Scholar 

  6. Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol. 2007;79:1–36 [Review].

    Article  PubMed  CAS  Google Scholar 

  7. Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32. discussion 23–32.

    PubMed  CAS  Google Scholar 

  8. Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol. 2007;304(2):825–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Iwamoto M, Tamamura Y, Koyama E, Komori T, Takeshita N, Williams JA, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.

    Article  PubMed  CAS  Google Scholar 

  11. Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci. 2006;1068:74–86 [Research Support, N.I.H., Extramural Review].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994;368(6472):639–43.

    Article  PubMed  CAS  Google Scholar 

  13. Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morpholog. 1977;39:115–27.

    CAS  Google Scholar 

  14. Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Koyama E, Ochiai T, Rountree RB, Kingsley DM, Enomoto-Iwamoto M, Iwamoto M, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97.

    Article  PubMed  CAS  Google Scholar 

  17. Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.

    Article  PubMed  CAS  Google Scholar 

  18. Iwamoto M, Higuchi Y, Koyama E, Enomoto-Iwamoto M, Kurisu K, Yeh H, et al. Transcription factor ERG variants and functional diversification of chondrocytes during limb long bone development. J Cell Biol. 2000;150(1):27–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243(1):44–54.

    Article  PubMed  CAS  Google Scholar 

  20. Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today. 2003;69(2):144–55.

    Article  PubMed  CAS  Google Scholar 

  21. Settle Jr SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003;254(1):116–30.

    Article  PubMed  CAS  Google Scholar 

  22. Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209(1):11–27.

    Article  PubMed  CAS  Google Scholar 

  23. Spater D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–49.

    Article  PubMed  CAS  Google Scholar 

  24. Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang T. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet. 1999;21(3):302–4.

    Article  PubMed  CAS  Google Scholar 

  26. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. 2011;351(1):70–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Husa M, Liu-Bryan R, Terkeltaub R. Shifting HIFs in osteoarthritis. Nat Med. 2010;16(6):641–4. doi:10.1038/nm0610-641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. Jun;9(2):46–52.

  29. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663–6 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  30. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22.

    Article  PubMed  CAS  Google Scholar 

  31. Wallis GA. Bone growth: coordinating chondrocyte differentiation. Curr Biol. 1996;6(12):1577–80 [Review].

    Article  PubMed  CAS  Google Scholar 

  32. Koyama E, Leatherman JL, Noji S, Pacifici M. Early chick limb cartilaginous elements possess polarizing activity and express hedgehog-related morphogenetic factors. Dev Dyn. 1996;207(3):344–54.

    Article  PubMed  CAS  Google Scholar 

  33. Kohno H, Shigeno C, Kasai R, Akiyama H, Iida H, Tsuboyama T, et al. Synovial fluids from patients with osteoarthritis and rheumatoid arthritis contain high levels of parathyroid hormone-related peptide. J Bone Miner Res. 1997;12(5):847–54 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura T, Aikawa T, Iwamoto-Enomoto M, Iwamoto M, Higuchi Y, Pacifici M, et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun. 1997;237(2):465–9.

    Article  PubMed  CAS  Google Scholar 

  35. Mountford P, Zevnik B, Duwel A, Nichols J, Li M, Dani C, et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A. 1994;91(10):4303–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, et al. Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res. 2006;21(1):113–23 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  37. Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra93 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Sohaskey ML, Yu J, Diaz MA, Plaas AH, Harland RM. JAWS coordinates chondrogenesis and synovial joint positioning. Development. 2008;135(13):2215–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.

    PubMed  CAS  Google Scholar 

  40. Gao Y, Lan Y, Liu H, Jiang R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev Biol. 2011;352(1):83–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Ito Y, Yeo JY, Chytil A, Han J, Bringas Jr P, Nakajima A, et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003;130(21):5269–80.

    Article  PubMed  CAS  Google Scholar 

  42. Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol. 1997;139(2):541–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, et al. TGF-beta signaling is essential for joint morphogenesis. J Cell Biol. 2007;177(6):1105–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  45. Jones KB, Sponseller PD, Erkula G, Sakai L, Ramirez F, Dietz 3rd HC, et al. Symposium on the musculoskeletal aspects of Marfan syndrome: meeting report and state of the science. J Orthop Res. 2007;25(3):413–22.

    Article  PubMed  Google Scholar 

  46. Li T, Longobardi L, Myers TJ, Temple JD, Esposito A and Spagnoli A. Tgfbeta signaling regulates interleukin-36 alpha in joint development and osteoarthritis. Abstract presented to ASBMR meeting. 2013.

  47. Longobardi LLT, Myers TJ, O’Rear L, Ozkan H, Li Y, Contaldo C and Spagnoli A. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell. 2012.

  48. Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol. 2004;14(5):320–8.

    Article  PubMed  CAS  Google Scholar 

  49. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73.

    Article  PubMed  CAS  Google Scholar 

  50. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev. 2006;7(9):678–89.

    Article  CAS  Google Scholar 

  51. Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood. 1999;93(8):2431–48.

    PubMed  CAS  Google Scholar 

  52. Chiba S. Notch signaling in stem cell systems. Stem Cells Dayton Ohio. 2006;24(11):2437–47.

    Article  CAS  Google Scholar 

  53. Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL. Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol. 2007;51(8):715–21.

    Article  PubMed  Google Scholar 

  54. Hayes AJ, Dowthwaite GP, Webster SV, Archer CW. The distribution of Notch receptors and their ligands during articular cartilage development. J Anat. 2003;202(6):495–502.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Karlsson C, Brantsing C, Egell S, Lindahl A. Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs. 2008;188(3):287–98.

    Article  PubMed  CAS  Google Scholar 

  56. Sassi N et al. The role of the Notch pathway in healthy and osteoarthritic articular cartilage: from experimental models to ex vivo studies. Arthritis Res Ther. 2011;13(2):208.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11(3):R85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976). 2009;34(21):2278–87.

    Article  Google Scholar 

  59. Hayes AJ, Benjamin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol. 2001;20(2):107–21.

    Article  PubMed  CAS  Google Scholar 

  60. Karystinou A, Dell’Accio F, Kurth TB, Wackerhage H, Khan IM, Archer CW, et al. Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford). 2009;48(9):1057–64.

    Article  CAS  Google Scholar 

  61. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol. 1994;126(6):1611–23 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  62. Pessler F, Dai L, Diaz-Torne C, Gomez-Vaquero C, Paessler ME, Zheng DH, et al. The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann Rheum Dis. 2008;67(8):1184–7.

    Article  PubMed  CAS  Google Scholar 

  63. Buckley CD, Filer A, Haworth O, Parsonage G, Salmon M. Defining a role for fibroblasts in the persistence of chronic inflammatory joint disease. Ann Rheum Dis. 2004;63 Suppl 2:ii92–ii5.

    PubMed Central  PubMed  CAS  Google Scholar 

  64. De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001;44(1):85–95 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  65. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten F, et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 2004;50(1):142–50 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  67. De Bari C, Kurth TB, Augello A. Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease. Birth Defects Res C Embryol Today. 2010;90(4):257–71 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  Google Scholar 

  68. Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg Am. 1977;59(6):703–23.

    PubMed  CAS  Google Scholar 

  69. Li T, Longobardi L, Myers TJ, Temple JD, Chandler RL, Ozkan H, et al. Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. May 1;22(9):1342–59.

  70. McKusick VA. First South-North Human Genome Conference. Genomics. 1992;14(4):1121–3.

    Article  PubMed  CAS  Google Scholar 

  71. McCarthy EF. Genetic diseases of bones and joints. Semin Diagn Pathol. Feb;28(1):26–36.

  72. Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 2007;17(3):252–8.

    Article  PubMed  CAS  Google Scholar 

  73. Shirai T, Yorimitsu T, Kiritooshi N, Matsuzaki F, Nakagoshi H. Notch signaling relieves the joint-suppressive activity of defective proventriculus in the Drosophila leg. Dev Biol. 2007;312(1):147–56.

    Article  PubMed  CAS  Google Scholar 

  74. Ando K, Kanazawa S, Tetsuka T, Ohta S, Jiang X, Tada T, et al. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene. 2003;22(49):7796–803.

    Article  PubMed  CAS  Google Scholar 

  75. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  76. Boyer J, Crosnier C, Driancourt C, Raynaud N, Gonzales M, Hadchouel M, et al. Expression of mutant JAGGED1 alleles in patients with Alagille syndrome. Hum Genet. 2005;116(6):445–53.

    Article  PubMed  CAS  Google Scholar 

  77. Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, et al. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem. 2007;282(45):32802–10.

    Article  PubMed  CAS  Google Scholar 

  78. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. Mar 1;351(1):70–81.

  79. Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. Nov;57(1):220–31.

  80. Peterson HA. Multiple hereditary osteochondromata. Clin Orthop. 1989;239:222–30.

    PubMed  Google Scholar 

  81. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580(12):2811–20.

    Article  PubMed  CAS  Google Scholar 

  82. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.

    Article  PubMed  CAS  Google Scholar 

  83. Lawler S, Candia AF, Ebner R, Shum L, Lopez AR, Moses HL, et al. The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development. 1994;120(1):165–75.

    PubMed  CAS  Google Scholar 

  84. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991;115(4):1091–105.

    Article  PubMed  CAS  Google Scholar 

  85. Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development. 1991;111(1):131–43.

    PubMed  CAS  Google Scholar 

  86. Serra R, Chang C. TGF-beta signaling in human skeletal and patterning disorders. Birth Defects Res C Embryo Today. 2003;69(4):333–51 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  87. Dunker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem. 2000;267(24):6982–8.

    Article  PubMed  CAS  Google Scholar 

  88. Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol. 2004;276(1):124–42.

    Article  PubMed  CAS  Google Scholar 

  89. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998;95(16):9378–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153(1):35–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998;94(6):703–14.

    Article  PubMed  CAS  Google Scholar 

  92. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998;12(1):107–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM. Role of TGF betas and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development. 1996;122(8):2349–57.

    PubMed  CAS  Google Scholar 

  94. Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol. 1995;101(3):398–407.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Hayashida K, Nanki T, Girschick H, Yavuz S, Ochi T, Lipsky PE. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Res. 2001;3(2):118–26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest. 1992;90(3):772–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. De Benedetti F, Pignatti P, Bernasconi S, Gerloni V, Matsushima K, Caporali R, et al. Interleukin 8 and monocyte chemoattractant protein-1 in patients with juvenile rheumatoid arthritis. Relation to onset types, disease activity, and synovial fluid leukocytes. J Rheumatol. 1999;26(2):425–31.

    PubMed  Google Scholar 

  98. Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res. 2008;49(3):293–7.

    Article  PubMed  CAS  Google Scholar 

  99. Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, et al. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol. 2008;40(10):2174–82.

    Article  PubMed  CAS  Google Scholar 

  100. Szekanecz Z, Halloran MM, Volin MV, Woods JM, Strieter RM, Kenneth Haines 3rd G, et al. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis Rheum. 2000;43(6):1266–77.

    Article  PubMed  CAS  Google Scholar 

  101. Lara Longobardi JDT, nunzia D’Onofrio, Ozkan H, Esposito A, Willcockson HH, Li T, Myers TJ, Ye P, Moats-Staats BM, Balestrieri M and Spagnoli A. A role for Tgf-betaRII/MCP5 axis during post-traumatic osteoarthritis and potential role od PTHrP in mediating MCP5 effect. Abstract presented at the OARSI meeting, Paris 2014.

  102. Lara Longobardi HO, Temple JD, Li T, Esposito A, Myers TJ, and Spagnoli A. Inhibition of MCP5 signaling decreases osteoarthritis lesions in a murine model of post-traumatic osteoarthritis. Abstract presented at the ASBMR Meeting, Baltimore, MD, USA. 2013.

  103. Bird HA. Controversies in the treatment of osteoarthritis. Clin Rheumatol. 2003;22(3):165–7.

    Article  PubMed  CAS  Google Scholar 

  104. Brandt KD. Non-surgical treatment of osteoarthritis: a half century of “advances”. Ann Rheum Dis. 2004;63(2):117–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a NIH-NIAMS Grant 1R01AR057042-03 (to AS), NC-TraCS Institute (NIH-CTSA) (to LL), NIH-NIAMS Grant 1R03AR063232-01 (to LL), and Arthritis National Research Foundation (to LL).

Compliance with Ethics Guidelines

Conflict of Interest

L Longobardi, T Li, L Tagliafierro, JD Temple, HH Willcockson, P Ye, A Esposito, F Xu, and A Spagnoli all declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Longobardi.

Additional information

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longobardi, L., Li, T., Tagliafierro, L. et al. Synovial Joints: from Development to Homeostasis. Curr Osteoporos Rep 13, 41–51 (2015). https://doi.org/10.1007/s11914-014-0247-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0247-7

Keywords

Navigation