Skip to main content

Advertisement

Log in

Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

It is important to understand the molecular mechanisms regulating osteoclast formation, as excess activation of osteoclasts is associated with various osteopenic disorders. Receptor activator of nuclear factor kappa B (RANKL) is a central player in osteoclastogenesis. Recent findings suggest that osteocytes are the major supplier of RANKL to osteoclast precursors. It has also been suggested that osteocyte cell death upregulates the RANKL/osteoprotegerin (OPG) ratio in viable osteocytes adjacent to apoptotic osteocytes in areas of bone microdamage, thus, contributing to localized osteoclast formation. Indeed, viable osteocytes can provide RANKL through direct interactions with osteoclast precursors at osteocyte dendritic processes. In addition, OPG tightly regulates RANKL cell surface presentation in osteocytes, which contributes to the inhibition of RANKL signaling, as well as the decoy receptor function of OPG. By contrast, the physiological role of RANKL in osteoblasts is yet to be clarified, although similar mechanisms of regulation are observed in both osteocytes and osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96. doi:10.1196/annals.1365.035.

    Article  CAS  PubMed  Google Scholar 

  2. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147–59.

    Article  CAS  PubMed  Google Scholar 

  3. Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem. 1994;56(3):357–66. doi:10.1002/jcb.240560312.

    Article  CAS  PubMed  Google Scholar 

  4. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.

    Article  CAS  PubMed  Google Scholar 

  5. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  CAS  PubMed  Google Scholar 

  6. Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immunol. 2003;4(5):399–403.

    Article  CAS  PubMed  Google Scholar 

  7. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66. doi:10.1359/JBMR.040305.

    Article  CAS  PubMed  Google Scholar 

  8. Silva I, Branco JC. Denosumab: recent update in postmenopausal osteoporosis. Acta Reumatologica Portuguesa. 2012;37(4):302–13.

    PubMed  Google Scholar 

  9. Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832–41.

    Article  CAS  PubMed  Google Scholar 

  10. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka S, Nakamura I, Inoue J, Oda H, Nakamura K. Signal transduction pathways regulating osteoclast differentiation and function. J Bone Miner Metab. 2003;21(3):123–33. doi:10.1007/s007740300021.

    Article  PubMed  Google Scholar 

  12. Hikita A, Kadono Y, Chikuda H, Fukuda A, Wakeyama H, Yasuda H, et al. Identification of an alternatively spliced variant of Ca2+-promoted Ras inactivator as a possible regulator of RANKL shedding. J Biol Chem. 2005;280(50):41700–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem. 1998;273(43):28355–9.

    Article  CAS  PubMed  Google Scholar 

  14. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353–62.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2005;208:30–49. doi:10.1111/j.0105-2896.2005.00327.x.

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun. 2006;351(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  17. Kim K, Kim JH, Lee J, Jin HM, Lee SH, Fisher DE, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005;280(42):35209–16. doi:10.1074/jbc.M505815200.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279(25):26475–80. doi:10.1074/jbc.M313973200.

    Article  CAS  PubMed  Google Scholar 

  19. Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP. NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene. 2006;372:92–102. doi:10.1016/j.gene.2005.12.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology. 1996;137(8):2187–90.

    CAS  Google Scholar 

  21. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12(12):2014–23. doi:10.1359/jbmr.1997.12.12.2014.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068–79. doi:10.1359/jbmr.2002.17.11.2068.

    Article  CAS  PubMed  Google Scholar 

  23. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi:10.1038/nm.2452. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.

    Article  CAS  PubMed  Google Scholar 

  24. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. doi:10.1038/nm.2448. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605. doi:10.1359/jbmr.081210.

    Article  CAS  PubMed  Google Scholar 

  26. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47(4):766–72. doi:10.1016/j.bone.2010.07.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metabol. 2007;5(6):464–75. doi:10.1016/j.cmet.2007.05.001.

    Article  CAS  Google Scholar 

  28. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. doi:10.1016/j.bone.2012.01.025. This study showed that RANKL/OPG ratio is up-regulated in osteocytes adjacent to the damaged site of bone.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35.

    CAS  PubMed  Google Scholar 

  30. Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235(1):176–90. doi:10.1002/dvdy.20603.

    Article  CAS  PubMed  Google Scholar 

  31. Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  32. Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res. 2013;28(9):1936–49. doi:10.1002/jbmr.1941. This study showed that osteocytes provide RANKL to osteoclast precursors through direct cell-cell interactions.

    Article  CAS  PubMed  Google Scholar 

  33. Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Establishment of optimized in vitro assay methods for evaluating osteocyte functions. J Bone Miner Metab. 2014. doi:10.1007/s00774-013-0555-5.

    PubMed  Google Scholar 

  34. Kariya Y, Honma M, Aoki S, Chiba A, Suzuki H. Vps33a mediates RANKL storage in secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2009;24(10):1741–52. doi:10.1359/jbmr.090409.

    Article  CAS  PubMed  Google Scholar 

  35. Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, et al. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res. 2010;25(9):1907–21. doi:10.1002/jbmr.89.

    Article  CAS  PubMed  Google Scholar 

  36. Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–13.

    Article  CAS  PubMed  Google Scholar 

  37. Blott EJ, Griffiths GM. Secretory lysosomes. Nat Rev Mol Cell Biol. 2002;3(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  38. Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2010. doi:10.1002/jbmr.268.

    PubMed  Google Scholar 

  39. Chavas L, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, et al. Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure. 2008;16(10):1468–77.

    Article  CAS  PubMed  Google Scholar 

  40. Hume AN, Ushakov DS, Tarafder AK, Ferenczi MA, Seabra MC. Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes. J Cell Sci. 2007;120(Pt 17):3111–22.

    Article  CAS  PubMed  Google Scholar 

  41. Stinchcombe J, Barral D, Mules E, Booth S, Hume A, Machesky L, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152(4):825–34.

    Article  CAS  PubMed  Google Scholar 

  42. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751–61.

    Article  CAS  PubMed  Google Scholar 

  43. Barral D, Ramalho J, Anders R, Hume A, Knapton H, Tolmachova T, et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest. 2002;110(2):247–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691–5.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

M. Honma has received research support from Grant-in-Aid for Scientific Research (B) 24390349 from the Japan Society for the Promotion of Science. Y. Ikebuchi has received research support from Grant-in-Aid for Challenging Exploratory Research 25670632 from the Japan Society for the Promotion of Science. Y. Kariya has received research support from Grant-in-Aid for Young Scientists (Start-up) 24890048 from the Japan Society for the Promotion of Science. H Suzuki declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

All studies by M. Honma, Y. Ikebuchi, Y. Kariya and H. Suzuki involving animal subjects were performed after approval of the Institutional Animal Care and Use Committee of Graduate School of Medicine, the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Honma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honma, M., Ikebuchi, Y., Kariya, Y. et al. Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors. Curr Osteoporos Rep 12, 115–120 (2014). https://doi.org/10.1007/s11914-014-0189-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0189-0

Keywords

Navigation