Skip to main content

Advertisement

Log in

Bone Mineral Density Deficits and Fractures in Survivors of Childhood Cancer

  • Osteoporosis and Cancer (P Taxel, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Although substantial increases in survival rates among children diagnosed with cancer have been observed in recent decades, survivors are at risk of developing therapy-related chronic health conditions. Among children and adolescents treated for cancer, acquisition of peak bone mass may be compromised by cancer therapies, nutritional deficiencies, and reduced physical activity. Accordingly, failure to accrue optimal bone mass during childhood may place survivors at increased risk for deficits in bone density and fracture in later life. Current recommendations for the treatment of bone density decrements among cancer survivors include dietary counseling and supplementation to ensure adequate calcium and vitamin D intake. Few strategies exist to prevent or treat bone loss. Moving forward, studies characterizing the trajectory of changes in bone density over time will facilitate the development of interventions and novel therapies aimed at minimizing bone loss among survivors of childhood cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, et al. (Eds). SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013.

  2. •• Hudson MM, Ness KK, Gurney JG, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81. In a large study of childhood cancer survivors who were systematically screened for the presence of chronic health conditions, a high frequency of survivors with endocrine and skeletal conditions were identified. Of note, was the substantial number of conditions that were previously undiagnosed.

    Article  PubMed  CAS  Google Scholar 

  3. Neglia JP, Friedman DL, Yasui Y, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst. 2001;93(8):618–29.

    Article  PubMed  CAS  Google Scholar 

  4. Kadan-Lottick NS, Dinu I, Wasilewski-Masker K, et al. Osteonecrosis in adult survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2008;26(18):3038–45.

    Article  PubMed  Google Scholar 

  5. Gilsanz V, Carlson ME, Roe TF, et al. Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr. 1990;117(2 Pt 1):238–44.

    Article  PubMed  CAS  Google Scholar 

  6. Halton JM, Atkinson SA, Fraher L, et al. Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. 1996;11(11):1774–83.

    Article  PubMed  CAS  Google Scholar 

  7. Henderson RC, Madsen CD, Davis C, et al. Bone density in survivors of childhood malignancies. J Pediatr Hematol Oncol. 1996;18(4):367–71.

    Article  PubMed  CAS  Google Scholar 

  8. Ragab AH, Frech RS, Vietti TJ. Osteoporotic fractures secondary to methotrexate therapy of acute leukemia in remission. Cancer. 1970;25(3):580–5.

    Article  PubMed  CAS  Google Scholar 

  9. van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, et al. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr. 2002;141(2):204–10.

    Article  PubMed  Google Scholar 

  10. Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Therapeut. 2005;27(1):1–11.

    Article  Google Scholar 

  11. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14 Suppl 3:S13–8.

    PubMed  Google Scholar 

  12. Seeman E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology. 2008;47 Suppl 4:iv2–8.

    Article  PubMed  Google Scholar 

  13. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Nysom K, Holm K, Michaelsen KF, et al. Bone mass after treatment for acute lymphoblastic leukemia in childhood. J Clin Oncol. 1998;16(12):3752–60.

    PubMed  CAS  Google Scholar 

  15. Arikoski P, Komulainen J, Riikonen P, et al. Impaired development of bone mineral density during chemotherapy: a prospective analysis of 46 children newly diagnosed with cancer. J Bone Miner Res. 1999;14(12):2002–9.

    Article  PubMed  CAS  Google Scholar 

  16. Atkinson SA, Halton JM, Bradley C, et al. Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl. 1998;11:35–9.

    Article  PubMed  CAS  Google Scholar 

  17. Warner JT, Evans WD, Webb DK, et al. Relative osteopenia after treatment for acute lymphoblastic leukemia. Pediatr Res. 1999;45(4 Pt 1):544–51.

    Article  PubMed  CAS  Google Scholar 

  18. Kadan-Lottick N, Marshall JA, Baron AE, et al. Normal bone mineral density after treatment for childhood acute lymphoblastic leukemia diagnosed between 1991 and 1998. J Pediatr. 2001;138(6):898–904.

    Article  PubMed  CAS  Google Scholar 

  19. Mandel K, Atkinson S, Barr RD, et al. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol. 2004;22(7):1215–21.

    Article  PubMed  Google Scholar 

  20. van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, et al. Bone mineral density, body composition, and height in long-term survivors of acute lymphoblastic leukemia in childhood. Med Pediatr Oncol. 2000;35(4):415–20.

    Article  PubMed  Google Scholar 

  21. Arikoski P, Komulainen J, Voutilainen R, et al. Reduced bone mineral density in long-term survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 1998;20(3):234–40.

    Article  PubMed  CAS  Google Scholar 

  22. Brennan BM, Rahim A, Adams JA, et al. Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. Br J Cancer. 1999;79(11–12):1859–63.

    Article  PubMed  CAS  Google Scholar 

  23. Hoorweg-Nijman JJ, Kardos G, Roos JC, et al. Bone mineral density and markers of bone turnover in young adult survivors of childhood lymphoblastic leukaemia. Clin Endocrinol. 1999;50(2):237–44.

    Article  CAS  Google Scholar 

  24. Tillmann V, Darlington AS, Eiser C, et al. Male sex and low physical activity are associated with reduced spine bone mineral density in survivors of childhood acute lymphoblastic leukemia. J Bone Miner Res. 2002;17(6):1073–80.

    Article  PubMed  CAS  Google Scholar 

  25. Al-Tonbary YA, El-Ziny MA, Elsharkawy AA, et al. Bone mineral density in newly diagnosed children with neuroblastoma. Pediatr Blood Cancer. 2011;56(2):202–5.

    Article  PubMed  Google Scholar 

  26. Sala A, Talsma D, Webber C, et al. Bone mineral status after treatment of malignant lymphoma in childhood and adolescence. European Journal of Cancer Care. 2007;16(4):373–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kang MJ, Kim SM, Lee YA, et al. Risk factors for osteoporosis in long-term survivors of intracranial germ cell tumors. Osteoporos Int. 2012;23(7):1921–9.

    Article  PubMed  CAS  Google Scholar 

  28. Holzer G, Krepler P, Koschat MA, et al. Bone mineral density in long-term survivors of highly malignant osteosarcoma. J Bone Joint Surg Br. 2003;85(2):231–7.

    Article  PubMed  CAS  Google Scholar 

  29. • Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian steroid-associated osteoporosis in the pediatric population (stopp) research program. J Bone Miner Res. 2009;24(7):1326–34. In a multicenter cohort study of children newly diagnosed with ALL a high prevalence of vertebral compressions fractures was observed.

    Article  PubMed  Google Scholar 

  30. Hogler W, Wehl G, van Staa T, et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the general practice research database. Pediatr Blood Cancer. 2007;48(1):21–7.

    Article  PubMed  Google Scholar 

  31. Ismail AA, Cooper C, Felsenberg D, et al. Number and type of vertebral deformities: Epidemiological characteristics and relation to back pain and height loss. European vertebral osteoporosis study group. Osteoporos Int. 1999;9(3):206–13.

    Article  PubMed  CAS  Google Scholar 

  32. Kaste SC, Tong X, Hendrick JM, et al. Qct vs dxa in 320 survivors of childhood cancer: Association of BMD with fracture history. Pediatr Blood Cancer. 2006;47(7):936–43.

    Article  PubMed  Google Scholar 

  33. • Wilson CL, Dilley K, Ness KK, et al. Fractures among long-term survivors of childhood cancer: a report from the childhood cancer survivor study. Cancer. 2012;118(23):5920–8. In one of the largest studies to date to examine the occurence of fractures among survivors of childhood cancer, the self-reported prevalence of fracture was found to be similar between childhood cancer survivors and their siblings.

    Article  PubMed  Google Scholar 

  34. Efthimiou J, Barnes PJ. Effect of inhaled corticosteroids on bones and growth. Eur Respir J. 1998;11(5):1167–77.

    Article  PubMed  CAS  Google Scholar 

  35. Reid IR. Glucocorticoid osteoporosis–mechanisms and management. European Federation of Endocrine Societies. Eur J Endocrinol. 1997;137(3):209–17.

    Article  PubMed  CAS  Google Scholar 

  36. Strauss AJ, Su JT, Dalton VM, et al. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol. 2001;19(12):3066–72.

    PubMed  CAS  Google Scholar 

  37. Fan C, Foster BK, Wallace WH, et al. Pathobiology and prevention of cancer chemotherapy-induced bone growth arrest, bone loss, and osteonecrosis. Curr Molec Med. 2011;11(2):140–51.

    Article  CAS  Google Scholar 

  38. Meister B, Gassner I, Streif W, et al. Methotrexate osteopathy in infants with tumors of the central nervous system. Med Pediatr Oncol. 1994;23(6):493–6.

    Article  PubMed  CAS  Google Scholar 

  39. Gnudi S, Butturini L, Ripamonti C, et al. The effects of methotrexate (mtx) on bone. A densitometric study conducted on 59 patients with mtx administered at different doses. Ital J Orthop Traumatol. 1988;14(2):227–31.

    PubMed  CAS  Google Scholar 

  40. Xian CJ, Cool JC, Scherer MA, et al. Cellular mechanisms for methotrexate chemotherapy-induced bone growth defects. Bone. 2007;41(5):842–50.

    Article  PubMed  CAS  Google Scholar 

  41. Fan C, Cool JC, Scherer MA, et al. Damaging effects of chronic low-dose methotrexate usage on primary bone formation in young rats and potential protective effects of folinic acid supplementary treatment. Bone. 2009;44(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  42. van Leeuwen BL, Kamps WA, Jansen HW, et al. The effect of chemotherapy on the growing skeleton. Cancer Treat Rev. 2000;26(5):363–76.

    Article  PubMed  Google Scholar 

  43. Pastore G, Zurlo MG, Acquaviva A, et al. Health status of young children with cancer following discontinuation of therapy. Med Pediatr Oncol. 1987;15(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  44. Bushhouse S, Ramsay NK, Pescovitz OH, et al. Growth in children following irradiation for bone marrow transplantation. Am J Pediatr Hematol Oncol. 1989;11(2):134–40.

    PubMed  CAS  Google Scholar 

  45. Kalapurakal JA, Thomas PR. Pediatric radiotherapy. An overview. Radiol Clin North Am. 1997;35(6):1265–80.

    PubMed  CAS  Google Scholar 

  46. Fuchs B, Valenzuela RG, Inwards C, et al. Complications in long-term survivors of ewing sarcoma. Cancer. 2003;98(12):2687–92.

    Article  PubMed  Google Scholar 

  47. Paulino AC. Late effects of radiotherapy for pediatric extremity sarcomas. Int J Radiat Oncol Biol Phys. 2004;60(1):265–74.

    Article  PubMed  Google Scholar 

  48. Wagner LM, Neel MD, Pappo AS, et al. Fractures in pediatric ewing sarcoma. J Pediatr Hematol Oncol. 2001;23(9):568–71.

    Article  PubMed  CAS  Google Scholar 

  49. Kaste SC, Shidler TJ, Tong X, et al. Bone mineral density and osteonecrosis in survivors of childhood allogeneic bone marrow transplantation. Bone Marrow Transplant. 2004;33(4):435–41.

    Article  PubMed  CAS  Google Scholar 

  50. Hesseling PB, Hough SF, Nel ED, et al. Bone mineral density in long-term survivors of childhood cancer. Int J Cancer Suppl. 1998;11:44–7.

    Article  PubMed  CAS  Google Scholar 

  51. Olney RC. Regulation of bone mass by growth hormone. Med Pediatr Oncol. 2003;41(3):228–34.

    Article  PubMed  Google Scholar 

  52. Brauner R, Czernichow P, Rappaport R. Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr. 1986;108(2):332.

    Article  PubMed  CAS  Google Scholar 

  53. Brennan BM, Rahim A, Mackie EM, et al. Growth hormone status in adults treated for acute lymphoblastic leukaemia in childhood. Clin Endocrinol. 1998;48(6):777–83.

    Article  CAS  Google Scholar 

  54. Vassilopoulou-Sellin R, Brosnan P, Delpassand A, et al. Osteopenia in young adult survivors of childhood cancer. Med Pediatr Oncol. 1999;32(4):272–8.

    Article  PubMed  CAS  Google Scholar 

  55. Nussey SS, Hyer SL, Brada M, et al. Bone mineralization after treatment of growth hormone deficiency in survivors of childhood malignancy. Acta Paediatr Suppl. 1994;399:9–14. discussion: 15.

    Article  PubMed  CAS  Google Scholar 

  56. Hogler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin Endocrinol. 2010;72(3):281–9.

    Article  CAS  Google Scholar 

  57. Kaste SC, Jones-Wallace D, Rose SR, et al. Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia. 2001;15(5):728–34.

    Article  PubMed  CAS  Google Scholar 

  58. Follin C, Link K, Wiebe T, et al. Bone loss after childhood acute lymphoblastic leukaemia: an observational study with and without gh therapy. European Federation of Endocrine Societies. Eur J Endocrinol. 2011;164(5):695–703.

    Article  PubMed  CAS  Google Scholar 

  59. Aisenberg J, Hsieh K, Kalaitzoglou G, et al. Bone mineral density in young adult survivors of childhood cancer. J Pediatr Hematol Oncol. 1998;20(3):241–5.

    Article  PubMed  CAS  Google Scholar 

  60. Sklar C. Reproductive physiology and treatment-related loss of sex hormone production. Med Pediatr Oncol. 1999;33(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  61. Blatt J, Poplack DG, Sherins RJ. Testicular function in boys after chemotherapy for acute lymphoblastic leukemia. N Engl J Med. 1981;304(19):1121–4.

    Article  PubMed  CAS  Google Scholar 

  62. Bramswig JH, Heimes U, Heiermann E, et al. The effects of different cumulative doses of chemotherapy on testicular function. Results in 75 patients treated for hodgkin's disease during childhood or adolescence. Cancer. 1990;65(6):1298–302.

    Article  PubMed  CAS  Google Scholar 

  63. Papadakis V, Vlachopapadopoulou E, Van Syckle K, et al. Gonadal function in young patients successfully treated for hodgkin disease. Med Pediatr Oncol. 1999;32(5):366–72.

    Article  PubMed  CAS  Google Scholar 

  64. Horning SJ, Hoppe RT, Kaplan HS, et al. Female reproductive potential after treatment for hodgkin's disease. N Engl J Med. 1981;304(23):1377–82.

    Article  PubMed  CAS  Google Scholar 

  65. Hudson MM, Greenwald C, Thompson E, et al. Efficacy and toxicity of multiagent chemotherapy and low-dose involved-field radiotherapy in children and adolescents with hodgkin's disease. J Clin Oncol. 1993;11(1):100–8.

    PubMed  CAS  Google Scholar 

  66. Michel G, Socie G, Gebhard F, et al. Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation — a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol. 1997;15(6):2238–46.

    PubMed  CAS  Google Scholar 

  67. Matsumoto M, Shinohara O, Ishiguro H, et al. Ovarian function after bone marrow transplantation performed before menarche. Arch Dis Child. 1999;80(5):452–4.

    Article  PubMed  CAS  Google Scholar 

  68. Sarafoglou K, Boulad F, Gillio A, et al. Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr. 1997;130(2):210–6.

    Article  PubMed  CAS  Google Scholar 

  69. Littley MD, Shalet SM, Beardwell CG, et al. Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol. 1989;31(3):363–73.

    Article  CAS  Google Scholar 

  70. Howell SJ, Berger G, Adams JE, et al. Bone mineral density in women with cytotoxic-induced ovarian failure. Clin Endocrinol. 1998;49(3):397–402.

    Article  CAS  Google Scholar 

  71. Critchley HOD, Thomson AB, Wallace WHB. Ovarian and uterine function and reproductive potential. In: Wallace WHB, Green DM, editors. Late effects of childhood cancer. London: Arnold. 2004.

  72. Thomson AB, Wallace WHB, Sklar C. Testicular function. In: Wallace WHB, Green DM, editors. Late effects of childhood cancer. London: Arnold. 2004.

  73. Samuda GM, Cheng MY, Yeung CY. Back pain and vertebral compression: an uncommon presentation of childhood acute lymphoblastic leukemia. J Pediatr Orthoped. 1987;7(2):175–8.

    Article  CAS  Google Scholar 

  74. Crofton PM, Ahmed SF, Wade JC, et al. Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab. 1998;83(9):3121–9.

    Article  PubMed  CAS  Google Scholar 

  75. Halton JM, Atkinson SA, Fraher L, et al. Mineral homeostasis and bone mass at diagnosis in children with acute lymphoblastic leukemia. J Pediatr. 1995;126(4):557–64.

    Article  PubMed  CAS  Google Scholar 

  76. Abrams SA. Normal acquisition and loss of bone mass. Hormone Research. 2003;60 Suppl 3:71–6.

    Article  PubMed  CAS  Google Scholar 

  77. Krishnamoorthy P, Freeman C, Bernstein ML, et al. Osteopenia in children who have undergone posterior fossa or craniospinal irradiation for brain tumors. Arch Pediatr Adolesc Med. 2004;158(5):491–6.

    Article  PubMed  Google Scholar 

  78. Huang TT, Ness KK. Exercise interventions in children with cancer: a review. Int J Pediatr. 2011;2011:461512.

    PubMed  Google Scholar 

  79. Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomechan. 1984;17(12):897–905.

    Article  CAS  Google Scholar 

  80. Odame I, Duckworth J, Talsma D, et al. Osteopenia, physical activity and health-related quality of life in survivors of brain tumors treated in childhood. Pediatr Blood Cancer. 2006;46(3):357–62.

    Article  PubMed  Google Scholar 

  81. Othman F, Guo CY, Webber C, et al. Osteopenia in survivors of wilms tumor. Int J Oncol. 2002;20(4):827–33.

    PubMed  Google Scholar 

  82. Zelissen PM, Croughs RJ, van Rijk PP, et al. Effect of glucocorticoid replacement therapy on bone mineral density in patients with addison disease. Ann Intern Med. 1994;120(3):207–10.

    Article  PubMed  CAS  Google Scholar 

  83. te Winkel ML, de Muinck Keizer-Schrama SM, de Jonge R, et al. Germline variation in the mthfr and mtrr genes determines the nadir of bone density in pediatric acute lymphoblastic leukemia: a prospective study. Bone. 2011;48(3):571–7.

    Article  Google Scholar 

  84. Jones TS, Kaste SC, Liu W, et al. Crhr1 polymorphisms predict bone density in survivors of acute lymphoblastic leukemia. J Clin Oncol. 2008;26(18):3031–7.

    Article  PubMed  CAS  Google Scholar 

  85. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers, Version 3.0. Arcadia, CA: Children's Oncology Group; October 2008; Available on-line:www.survivorshipguidelines.org.

  86. Warady BD, Lindsley CB, Robinson FG, et al. Effects of nutritional supplementation on bone mineral status of children with rheumatic diseases receiving corticosteroid therapy. J Rheumatol. 1994;21(3):530–5.

    PubMed  CAS  Google Scholar 

  87. Saggese G, Bertelloni S, Baroncelli GI, et al. Mineral metabolism and calcitriol therapy in idiopathic juvenile osteoporosis. Am J Dis Child. 1991;145(4):457–62.

    PubMed  CAS  Google Scholar 

  88. Nishi Y, Hamamoto K, Kajiyama M, et al. Effect of long-term calcitonin therapy by injection and nasal spray on the incidence of fractures in osteogenesis imperfecta. J Pediatr. 1992;121(3):477–80.

    Article  PubMed  CAS  Google Scholar 

  89. Sebestyen JF, Srivastava T, Alon US. Bisphosphonates use in children. Clin Pediatr. 2012;51(11):1011–24.

    Article  Google Scholar 

  90. Barr RD, Guo CY, Wiernikowski J, et al. Osteopenia in children with acute lymphoblastic leukemia: a pilot study of amelioration with pamidronate. Med Pediatr Oncol. 2002;39(1):44–6.

    Article  PubMed  Google Scholar 

  91. Goldbloom EB, Cummings EA, Yhap M. Osteoporosis at presentation of childhood all: management with pamidronate. Pediatr Hematol Oncol. 2005;22(7):543–50.

    Article  PubMed  Google Scholar 

  92. Lee JM, Kim JE, Bae SH, et al. Efficacy of pamidronate in children with low bone mineral density during and after chemotherapy for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Res. 2013;48(2):99–106.

    Article  PubMed  CAS  Google Scholar 

  93. Lethaby C, Wiernikowski J, Sala A, et al. Bisphosphonate therapy for reduced bone mineral density during treatment of acute lymphoblastic leukemia in childhood and adolescence: a report of preliminary experience. J Pediatr Hematol Oncol. 2007;29(9):613–6.

    Article  PubMed  CAS  Google Scholar 

  94. • Joyce ED, Nolan VG, Ness KK, et al. Association of muscle strength and bone mineral density in adult survivors of childhood acute lymphoblastic leukemia. Arch Phys Med Rehabil. 2011;92(6):873–9. In a study of ALL survivors, muscle strength in the extremities was associated with BMD suggesting a possible role for muscle strengthening interventions as a means of improving bone density among childhood cancer survivors.

    Article  PubMed  Google Scholar 

  95. Demark-Wahnefried W, Werner C, Clipp EC, et al. Survivors of childhood cancer and their guardians. Cancer. 2005;103(10):2171–80.

    Article  PubMed  Google Scholar 

  96. Ness KK, Leisenring WM, Huang S, et al. Predictors of inactive lifestyle among adult survivors of childhood cancer: a report from the childhood cancer survivor study. Cancer. 2009;115(9):1984–94.

    Article  PubMed  Google Scholar 

  97. Marchese VG, Chiarello LA, Lange BJ. Effects of physical therapy intervention for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42(2):127–33.

    Article  PubMed  Google Scholar 

  98. San Juan AF, Chamorro-Vina C, Mate-Munoz JL, et al. Functional capacity of children with leukemia. Int J Sports Med. 2008;29(2):163–7.

    Article  PubMed  CAS  Google Scholar 

  99. Hartman A, te Winkel ML, van Beek RD, et al. A randomized trial investigating an exercise program to prevent reduction of bone mineral density and impairment of motor performance during treatment for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  100. Robison LL, Green DM, Hudson M, et al. Long-term outcomes of adult survivors of childhood cancer. Cancer. 2005;104(11 Suppl):2557–64.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidlines

Conflict of Interest

C.L. Wilson declares that she has no conflicts of interest. K.K. Ness declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen L. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, C.L., Ness, K.K. Bone Mineral Density Deficits and Fractures in Survivors of Childhood Cancer. Curr Osteoporos Rep 11, 329–337 (2013). https://doi.org/10.1007/s11914-013-0165-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0165-0

Keywords

Navigation