Skip to main content

Advertisement

Log in

Radiation-Induced Cardiovascular Disease: Mechanisms, Prevention, and Treatment

  • Cardio-oncology (JN Upshaw, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite the advancements of modern radiotherapy, radiation-induced cardiovascular disease (RICVD) remains a common cause of morbidity and mortality among cancer survivors.

Recent Findings

Proposed pathogenetic mechanisms of RICVD include endothelial cell damage with accelerated atherosclerosis, pro-thrombotic alterations in the coagulation pathway as well as inflammation and fibrosis of the myocardial, pericardial, valvular, and conduction tissues. Prevention of RICVD can be achieved by minimizing the exposure of the cardiovascular system to radiation, by treatment of underlying cardiovascular risk factors and cardiovascular disease, and possibly by prophylactic pharmacotherapy post exposure.

Summary

Herein we summarize current knowledge on the mechanisms underlying the pathogenesis of RICVD and propose prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.

    Article  PubMed  Google Scholar 

  2. Ng AK, Bernardo MP, Weller E, Backstrand KH, Silver B, Marcus KC, et al. Long-term survival and competing causes of death in patients with early-stage Hodgkin’s disease treated at age 50 or younger. J Clin Oncol. 2002;20(8):2101–8.

    Article  PubMed  Google Scholar 

  3. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.

    Article  PubMed  Google Scholar 

  4. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.

    Article  CAS  PubMed  Google Scholar 

  5. Paszat LF, Mackillop WJ, Groome PA, Boyd C, Schulze K, Holowaty E. Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1998;16(8):2625–31.

    Article  CAS  Google Scholar 

  6. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. JAMA. 1993;270(16):1949–55.

    Article  CAS  PubMed  Google Scholar 

  7. Hooning MJ, Botma A, Aleman BM, Baaijens MH, Bartelink H, Klijn JG, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst. 2007;99(5):365–75.

    Article  PubMed  Google Scholar 

  8. van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015;175(6):1007–17.

    Article  PubMed  Google Scholar 

  9. Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27(8):766–73.

    Article  CAS  PubMed  Google Scholar 

  10. Al-Kindi SG, Oliveira GH. Incidence and trends of cardiovascular mortality after common cancers in young adults: Analysis of surveillance, epidemiology and end-results program. World J Cardiol. 2016;8(6):368–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rutqvist LE, Rose C, Cavallin-Stahl E. A systematic overview of radiation therapy effects in breast cancer. Acta Oncol. 2003;42(5–6):532–45.

    Article  PubMed  Google Scholar 

  12. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys. 2005;62(2):554–60.

    Article  PubMed  Google Scholar 

  13. Koutroumpakis E, Palaskas NL, Lin SH, Abe JI, Liao Z, Banchs J, et al. Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy. 2020;65(3–4):65–76.

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol. 2017;40(4):255–61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen VE, Song AJ, Werner-Wasik M, Owen G, Lakhani P, Lu B. Effect of radiation dose to cardiac substructures on the acute development of new arrhythmias following conventionally fractionated radiation treatment to the lung. International Journal of Radiation Oncology*Biology*Physics. 2019;105(1, Supplement):E500.

  16. •• Wang X, Palaskas NL, Yusuf SW, Abe JI, Lopez-Mattei J, Banchs J, et al. Incidence and onset of severe cardiac events after radiotherapy for esophageal cancer. J Thorac Oncol. 2020;15(10):1682-90. This study highlights the frequent incidence of severe cardiac events after radiation therapy in patients with esophageal cancer, and especially in those with higher radiation doses to the heart and preexisting cardiac disease.

  17. Nilsson G, Witt Nyström P, Isacsson U, Garmo H, Duvernoy O, Sjögren I, et al. Radiation dose distribution in coronary arteries in breast cancer radiotherapy. Acta Oncol. 2016;55(8):959–63.

    Article  CAS  PubMed  Google Scholar 

  18. Schultz-Hector S. Radiation-induced heart disease: review of experimental data on dose response and pathogenesis. Int J Radiat Biol. 1992;61(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  19. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res. 2008;169(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  20. Stewart FA. Mechanisms and dose-response relationships for radiation-induced cardiovascular disease. Ann ICRP. 2012;41(3–4):72–9.

    Article  CAS  PubMed  Google Scholar 

  21. Weintraub NL, Jones WK, Manka D. Understanding radiation-induced vascular disease. J Am Coll Cardiol. 2010;55(12):1237–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ebrahimian TG, Beugnies L, Surette J, Priest N, Gueguen Y, Gloaguen C, et al. Chronic exposure to external low-dose gamma radiation induces an increase in anti-inflammatory and anti-oxidative parameters resulting in atherosclerotic plaque size reduction in ApoE(-/-) mice. Radiat Res. 2018;189(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  23. Halle M, Gabrielsen A, Paulsson-Berne G, Gahm C, Agardh HE, Farnebo F, et al. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol. 2010;55(12):1227–36.

    Article  CAS  PubMed  Google Scholar 

  24. Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh PK, et al. Radiation-induced endothelial vascular injury: a review of possible mechanisms. JACC Basic Transl Sci. 2018;3(4):563–72.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Przybyszewski WM, Widel M, Rzeszowska-Wolny J. Cardiotoxic consequences of ionizing radiation and anthracyclines. Postepy Hig Med Dosw (Online). 2006;60:397–405.

    Google Scholar 

  26. Linard C, Marquette C, Mathieu J, Pennequin A, Clarencon D, Mathe D. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. Int J Radiat Oncol Biol Phys. 2004;58(2):427–34.

    Article  CAS  PubMed  Google Scholar 

  27. Tribble DL, Barcellos-Hoff MH, Chu BM, Gong EL. Ionizing radiation accelerates aortic lesion formation in fat-fed mice via SOD-inhibitable processes. Arterioscler Thromb Vasc Biol. 1999;19(6):1387–92.

    Article  CAS  PubMed  Google Scholar 

  28. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2010;97(1):149–61.

    Article  CAS  Google Scholar 

  29. Fajardo LF. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol. 2005;44(1):13–22.

    Article  PubMed  Google Scholar 

  30. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjögren I, Lagerqvist B, et al. Distribution of coronary artery stenosis after radiation for breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012;30(4):380–6.

    Article  Google Scholar 

  31. Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22(15):3139–48.

    Article  PubMed  Google Scholar 

  32. Fajardo LF, Stewart JR. Experimental radiation-induced heart disease. I. Light microscopic studies. The American journal of pathology. 1970;59(2):299–316.

  33. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2625–41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Boerma M, Zhou D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat Res. 2016;186(2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  CAS  PubMed  Google Scholar 

  36. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19(8):439–53.

    Article  CAS  PubMed  Google Scholar 

  37. He S, Sharpless NE. Senescence in Health and Disease. Cell. 2017;169(6):1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.

    Article  CAS  PubMed  Google Scholar 

  39. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286(42):36396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.

    Article  CAS  PubMed  Google Scholar 

  41. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29(2):273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh MV, Kotla S, Le NT, Ae Ko K, Heo KS, Wang Y, et al. Senescent phenotype induced by p90RSK-NRF2 signaling sensitizes monocytes and macrophages to oxidative stress in HIV-positive individuals. Circulation. 2019;139(9):1199–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghoda L, Lin X, Greene WC. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J Biol Chem. 1997;272(34):21281–8.

    Article  CAS  PubMed  Google Scholar 

  45. Chen RH, Tung R, Abate C, Blenis J. Cytoplasmic to nuclear signal transduction by mitogen-activated protein kinase and 90 kDa ribosomal S6 kinase. Biochem Soc Trans. 1993;21(4):895–900.

    Article  CAS  PubMed  Google Scholar 

  46. Fisher TL, Blenis J. Evidence for two catalytically active kinase domains in pp90rsk. Mol Cell Biol. 1996;16(3):1212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996;273(5277):959–63.

    Article  CAS  PubMed  Google Scholar 

  48. Le NT, Heo KS, Takei Y, Lee H, Woo CH, Chang E, et al. A Crucial Role for p90RSK-Mediated Reduction of ERK5 Transcriptional Activity in Endothelial Dysfunction and Atherosclerosis. Circulation. 2013;127(4):486–99.

    Article  CAS  PubMed  Google Scholar 

  49. Abe J, Berk BC. Novel mechanisms of endothelial mechanotransduction. Arterioscler Thromb Vasc Biol. 2014;34(11):2378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Vu HT, Kotla S, Ko KA, Fujii Y, Tao Y, Medina J, et al. Ionizing radiation induces endothelial inflammation and apoptosis via p90RSK-mediated ERK5 S496 phosphorylation. Front Cardiovasc Med. 2018;5:23. This animal study showed that ionizing radiation augmented disturbed flow-induced VCAM-1 expression in vivo. Endothelial p90RSK was robustly activated by ionizing radiation and subsequently up-regulated ERK5 S496 phosphorylation, inflammation, and apoptosis in endothelial cells.

  51. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.

    Article  CAS  PubMed  Google Scholar 

  52. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 2004;23(3–4):311–22.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar N, Qian W, Van Houten B. Sick mitochondria cause telomere damage: implications for disease. Mol Cell Oncol. 2020;7(1):1678362.

    Article  CAS  PubMed  Google Scholar 

  54. Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, et al. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A. 2019;116(37):18435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13(4):461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Virag L, Salzman AL, Szabo C. Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol. 1998;161(7):3753–9.

    CAS  PubMed  Google Scholar 

  57. Bai P, Nagy L, Fodor T, Liaudet L, Pacher P. Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab. 2015;26(2):75–83.

    Article  CAS  PubMed  Google Scholar 

  58. Gomez M, Wu J, Schreiber V, Dunlap J, Dantzer F, Wang Y, et al. PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell. 2006;17(4):1686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res. 1998;40(3):426–32.

    Article  CAS  PubMed  Google Scholar 

  60. Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology. J Am Heart Assoc. 2021;10(18):e021686.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lauk S, Kiszel Z, Buschmann J, Trott KR. Radiation-induced heart disease in rats. Int J Radiat Oncol Biol Phys. 1985;11(4):801–8.

    Article  CAS  PubMed  Google Scholar 

  62. McChesney SL, Gillette EL, Orton EC. Canine cardiomyopathy after whole heart and partial lung irradiation. Int J Radiat Oncol Biol Phys. 1988;14(6):1169–74.

    Article  CAS  PubMed  Google Scholar 

  63. Veeragandham RS, Goldin MD. Surgical management of radiation-induced heart disease. Ann Thorac Surg. 1998;65(4):1014–9.

    Article  CAS  PubMed  Google Scholar 

  64. Desai MY, Wu W, Masri A, Popovic ZB, Agarwal S, Smedira NG, et al. Increased aorto-mitral curtain thickness independently predicts mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. Ann Thorac Surg. 2014;97(4):1348–55.

    Article  PubMed  Google Scholar 

  65. Brosius FC, 3rd, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart. The American journal of medicine. 1981;70(3):519–30.

  66. • Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage iii non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387-94. This study assessed patients with non-small-cell lung cancer from 6 prospective radiation dose-escalated trials. It highlighted the frequent incidence of cardiac events following thoracic radiation therapy, and their independent association with higher heart dose and presence of underlying cardiac risk.

  67. Myrehaug S, Pintilie M, Tsang R, Mackenzie R, Crump M, Chen Z, et al. Cardiac morbidity following modern treatment for Hodgkin lymphoma: supra-additive cardiotoxicity of doxorubicin and radiation therapy. Leuk Lymphoma. 2008;49(8):1486–93.

    Article  CAS  PubMed  Google Scholar 

  68. Martel MK, Sahijdak WM, Ten Haken RK, Kessler ML, Turrisi AT. Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys. 1998;40(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  69. Maraldo MV, Brodin NP, Vogelius IR, Aznar MC, Munck Af Rosenschold P, Petersen PM, et al. Risk of developing cardiovascular disease after involved node radiotherapy versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;83(4):1232–7.

  70. Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):169–74.

    Article  PubMed  Google Scholar 

  71. Maraldo MV, Specht L. A decade of comparative dose planning studies for early-stage Hodgkin lymphoma: what can we learn? Int J Radiat Oncol Biol Phys. 2014;90(5):1126–35.

    Article  PubMed  Google Scholar 

  72. Simonetto C, Eidemuller M, Gaasch A, Pazos M, Schonecker S, Reitz D, et al. Does deep inspiration breath-hold prolong life? Individual risk estimates of ischaemic heart disease after breast cancer radiotherapy. Radiother Oncol. 2019;131:202–7.

    Article  PubMed  Google Scholar 

  73. Remouchamps VM, Vicini FA, Sharpe MB, Kestin LL, Martinez AA, Wong JW. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys. 2003;55(2):392–406.

    Article  PubMed  Google Scholar 

  74. Welsh B, Chao M, Foroudi F. Reducing cardiac doses: a novel multi-leaf collimator modification technique to reduce left anterior descending coronary artery dose in patients with left-sided breast cancer. J Med Radiat Sci. 2017;64(2):114–9.

    Article  PubMed  Google Scholar 

  75. •• Lin SH, Hobbs BP, Verma V, Tidwell RS, Smith GL, Lei X, et al. Randomized phase IIB trial of proton beam therapy versus intensity-modulated radiation therapy for locally advanced esophageal cancer. J Clin Oncol. 2020;38(14):1569-79. This trial showed that in patients with locally advanced esophageal cancer, proton beam therapy reduces the risk and severity of radiation-related adverse events compared to intensity-modulated radiation therapy, while it maintains similar progression-free survival.

  76. Karam HM, Radwan RR. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: a new perspective of an antidiabetic drug. Clin Exp Pharmacol Physiol. 2019;46(12):1124–32.

    Article  CAS  PubMed  Google Scholar 

  77. Yu JM, Hsieh MC, Qin L, Zhang J, Wu SY. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am J Cancer Res. 2019;9(5):1017–26.

    PubMed  PubMed Central  Google Scholar 

  78. Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J, et al. Atorvastatin ameliorates radiation-induced cardiac fibrosis in rats. Radiat Res. 2015;184(6):611–20.

    Article  CAS  PubMed  Google Scholar 

  79. • Boulet J, Pena J, Hulten EA, Neilan TG, Dragomir A, Freeman C, et al. Statin use and risk of vascular events among cancer patients after radiotherapy to the thorax, head, and neck. J Am Heart Assoc. 2019;8(13):e005996. This large retrospective study showed that statin use post radiation therapy was associated with a significant reduction in stroke, and with a trend towards significantly reducing myocardial infarction.

  80. Camara Planek MI, Silver AJ, Volgman AS, Okwuosa TM. Exploratory review of the role of statins, colchicine, and aspirin for the prevention of radiation-associated cardiovascular disease and mortality. J Am Heart Assoc. 2020;9(2):e014668.

  81. O’Herron T, Lafferty J. Prophylactic use of colchicine in preventing radiation induced coronary artery disease. Med Hypotheses. 2018;111:58–60.

    Article  CAS  PubMed  Google Scholar 

  82. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation. 2016;134(10):e123–55.

    Article  PubMed  Google Scholar 

  83. Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation. 2011;124(4):489–532.

  84. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):e71–126.

    Article  PubMed  Google Scholar 

  85. Reed GW, Masri A, Griffin BP, Kapadia SR, Ellis SG, Desai MY. Long-term mortality in patients with radiation-associated coronary artery disease treated with percutaneous coronary intervention. Circ Cardiovasc Interv. 2016;9(6).

  86. Daitoku K, Fukui K, Ichinoseki I, Munakata M, Takahashi S, Fukuda I. Radiotherapy-induced aortic valve disease associated with porcelain aorta. The Japanese journal of thoracic and cardiovascular surgery : official publication of the Japanese Association for Thoracic Surgery = Nihon Kyobu Geka Gakkai zasshi. 2004;52(7):349–52.

  87. Wu W, Masri A, Popovic ZB, Smedira NG, Lytle BW, Marwick TH, et al. Long-term survival of patients with radiation heart disease undergoing cardiac surgery: a cohort study. Circulation. 2013;127(14):1476–85.

    Article  PubMed  Google Scholar 

  88. Chang AS, Smedira NG, Chang CL, Benavides MM, Myhre U, Feng J, et al. Cardiac surgery after mediastinal radiation: extent of exposure influences outcome. J Thorac Cardiovasc Surg. 2007;133(2):404–13.

    Article  PubMed  Google Scholar 

  89. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240-327.

    PubMed  Google Scholar 

  91. Donnellan E, Masri A, Johnston DR, Pettersson GB, Rodriguez LL, Popovic ZB, et al. Long-term outcomes of patients with mediastinal radiation-associated severe aortic stenosis and subsequent surgical aortic valve replacement: a matched cohort study. Journal of the American Heart Association. 2017;6(5).

  92. Elbadawi A, Albaeni A, Elgendy IY, Ogunbayo GO, Jimenez E, Cornwell L, et al. Transcatheter versus surgical aortic valve replacement in patients with prior mediastinal radiation. JACC Cardiovasc Interv. 2020;13(22):2658–66.

    Article  PubMed  Google Scholar 

  93. Yazdchi F, Hirji Sameer A, Nohria A, Percy E, Harloff M, Malarczyk A, et al. Transcatheter compared with surgical aortic valve replacement in patients with previous chest-directed radiation therapy. JACC: CardioOncology. 2021;3(3):397–407.

  94. Crestanello JA, McGregor CG, Danielson GK, Daly RC, Dearani JA, Orszulak TA, et al. Mitral and tricuspid valve repair in patients with previous mediastinal radiation therapy. The Annals of thoracic surgery. 2004;78(3):826–31; discussion -31.

  95. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2019;140(8):e382–482.

    PubMed  Google Scholar 

  96. Fradley Michael G, Lefebvre B, Carver J, Cheung Jim W, Feigenberg Steven J, Lampert R, et al. How to manage patients with cardiac implantable electronic devices undergoing radiation therapy. JACC: CardioOncology. 2021;3(3):447–51.

  97. George TJ, Arnaoutakis GJ, Beaty CA, Kilic A, Baumgartner WA, Conte JV. Contemporary etiologies, risk factors, and outcomes after pericardiectomy. Ann Thorac Surg. 2012;94(2):445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Albadawi H, Crawford RS, Atkins MD, Watkins MT. Role of poly(ADP-ribose) polymerase during vascular reconstruction. Vascular. 2006;14(6):362–5.

    Article  PubMed  Google Scholar 

  99. Kotla S, Zhang A, Imanishi M, Ko KA, Lin SH, Gi YJ, et al. Nucleus-mitochondria positive feedback loop formed by ERK5 S496 phosphorylation-mediated poly (ADP-ribose) polymerase activation provokes persistent pro-inflammatory senescent phenotype and accelerates coronary atherosclerosis after chemo-radiation. Redox Biol. 2021;47:102132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios Koutroumpakis.

Ethics declarations

Conflict of Interest

AD is supported in part by the Ting Tsung and Wei Fong Chao Distinguished Chair. KTN is a Cancer Prevention Research Institute of Texas (CPRIT) Scholar in Cancer Research. KTN is supported by CPRIT RR190077, NCI L30CA253796, and NCI K08CA263313. NLP is a Cancer Prevention Research Institute of Texas (CPRIT) Scholar and Andrew Sabin Family Foundation Fellow. NLP is supported by CPRIT RP200670 and by NIH/NCI 1P01CA261669-01. The rest of the authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutroumpakis, E., Deswal, A., Yusuf, S.W. et al. Radiation-Induced Cardiovascular Disease: Mechanisms, Prevention, and Treatment. Curr Oncol Rep 24, 543–553 (2022). https://doi.org/10.1007/s11912-022-01238-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01238-8

Keywords

Navigation