Skip to main content
Log in

Optimal Use of Tumor-Based Molecular Assays for Localized Prostate Cancer

  • Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purposeof Review

The use of genomic testing for prostate cancer continues to grow; however, utilization remains institutionally dependent. Herein, we review current tissue-based markers and comment on current use with active surveillance and prostate MRI.

Recent Findings

While data continues to emerge, several studies have shown a role for genomic testing for treatment selection. Novel testing options include ConfirmMDx, ProMark, Prolaris, and Decipher, which have shown utility in select patients.

Summary

The current body of literature on this specific topic remains very limited; prospective trials with long-term follow-up are needed to improve our understanding on how these genomic tests fit when combined with our current clinical tools. As the literature matures, it is likely that newer risk calculators that combine our classic clinical variables with genomic and imaging data will be developed to bring about standard protocols for prostate cancer decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  2. Siegel DA, O’Neil ME, Richards TB, Dowling NF, Weir HK. Prostate cancer incidence and survival, by stage and race/ethnicity - United States, 2001–2017. MMWR Morb Mortal Wkly Rep. 2020;69(41):1473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carter HB, Albertsen PC, Barry MJ, Etzioni R, Freedland SJ, Greene KL, et al. Early detection of prostate cancer: AUA guideline. J Urol. 2013;190(2):419–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324(17):1156–61.

    Article  CAS  PubMed  Google Scholar 

  5. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366(11):981–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bo M, Ventura M, Marinello R, Capello S, Casetta G, Fabris F. Relationship between prostatic specific antigen (PSA) and volume of the prostate in the benign prostatic hyperplasia in the elderly. Crit Rev Oncol Hematol. 2003;47(3):207–11.

    Article  PubMed  Google Scholar 

  7. Eastham JA, Riedel E, Scardino PT, Shike M, Fleisher M, Schatzkin A, et al. Variation of serum prostate-specific antigen levels: an evaluation of year-to-year fluctuations. JAMA. 2003;289(20):2695–700.

    Article  CAS  PubMed  Google Scholar 

  8. Loeb S, Roehl KA, Antenor JA, Catalona WJ, Suarez BK, Nadler RB. Baseline prostate-specific antigen compared with median prostate-specific antigen for age group as predictor of prostate cancer risk in men younger than 60 years old. Urology. 2006;67(2):316–20.

    Article  PubMed  Google Scholar 

  9. Verbeek JFM, Roobol MJ, group ERs. What is an acceptable false negative rate in the detection of prostate cancer? Translat Androl Urol. 2018;7(1):54–60.

    Article  Google Scholar 

  10. Efesoy O, Bozlu M, Çayan S, Akbay E. Complications of transrectal ultrasound-guided 12-core prostate biopsy: a single center experience with 2049 patients. Turk J Urol. 2013;39(1):6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Serefoglu EC, Altinova S, Ugras NS, Akincioglu E, Asil E, Balbay MD. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J. 2013;7(5–6):E293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, McNeill SA, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.

    Article  PubMed  Google Scholar 

  13. Partin AW, Van Neste L, Klein EA, Marks LS, Gee JR, Troyer DA, et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014;192(4):1081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wojno KJ, Costa FJ, Cornell RJ, Small JD, Pasin E, Van Criekinge W, et al. Reduced rate of repeated prostate biopsies observed in ConfirmMDx clinical utility field study. Am Health Drug Benefits. 2014;7(3):129–34.

    PubMed  PubMed Central  Google Scholar 

  15. Aubry W, Lieberthal R, Willis A, Bagley G, Willis SM 3rd, Layton A. Budget impact model: epigenetic assay can help avoid unnecessary repeated prostate biopsies and reduce healthcare spending. Am Health Drug Benefits. 2013;6(1):15–24.

    PubMed  PubMed Central  Google Scholar 

  16. Knezevic D, Goddard AD, Natraj N, Cherbavaz DB, Clark-Langone KM, Snable J, et al. Analytical validation of the Oncotype DX prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics. 2013;14:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brand TC, Zhang N, Crager MR, Maddala T, Dee A, Sesterhenn IA, et al. Patient-specific meta-analysis of 2 clinical validation studies to predict pathologic outcomes in prostate cancer using the 17-gene genomic prostate score. Urology. 2016;89:69–75.

    Article  PubMed  Google Scholar 

  18. Covas Moschovas M, Chew C, Bhat S, Sandri M, Rogers T, Dell'Oglio P, et al. Association between Oncotype DX genomic prostate score and adverse tumor pathology after radical prostatectomy. European urology focus. 2021.

  19. Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol. 2015;68(1):123–31.

    Article  PubMed  Google Scholar 

  20. Eggener S, Karsh LI, Richardson T, Shindel AW, Lu R, Rosenberg S, et al. A 17-gene panel for prediction of adverse prostate cancer pathologic features: prospective clinical validation and utility. Urology. 2019;126:76–82.

    Article  PubMed  Google Scholar 

  21. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66(3):550–60.

    Article  PubMed  Google Scholar 

  22. Magi-Galluzzi C, Isharwal S, Falzarano SM, Tsiatis A, Dee A, Maddala T, et al. The 17-gene genomic prostate score assay predicts outcome after radical prostatectomy independent of PTEN status. Urology. 2018;121:132–8.

    Article  PubMed  Google Scholar 

  23. Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, et al. Molecular biomarkers in localized prostate cancer: ASCO guideline. J Clin Oncol. 2020;38(13):1474–94.

    Article  PubMed  Google Scholar 

  24. Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019 NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2019;17(5):479–505.

    Article  CAS  Google Scholar 

  25. Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline Part I: risk stratification, shared decision making, and care options. J Urol. 2018;199(3):683–90.

    Article  PubMed  Google Scholar 

  26. Cullen J, Kuo HC, Shan J, Lu R, Aboushwareb T, Van Den Eeden SK. The 17-gene genomic prostate score test as a predictor of outcomes in men with unfavorable intermediate risk prostate cancer. Urology. 2020;143:103–11.

    Article  PubMed  Google Scholar 

  27. Eure G, Germany R, Given R, Lu R, Shindel AW, Rothney M, et al. Use of a 17-gene prognostic assay in contemporary urologic practice: results of an interim analysis in an observational cohort. Urology. 2017;107:67–75.

    Article  PubMed  Google Scholar 

  28. Albala D, Kemeter MJ, Febbo PG, Lu R, John V, Stoy D, et al. Health economic impact and prospective clinical utility of Oncotype DX® Genomic Prostate Score. Rev Urol. 2016;18(3):123–32.

    PubMed  PubMed Central  Google Scholar 

  29. Xie W, Regan MM, Buyse M, Halabi S, Kantoff PW, Sartor O, Soule H, et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J Clin Oncol. 2017;35(27):3097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Health QO. Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment. Ont Health Technol Assess Ser. 2017;17(6):1–75.

    Google Scholar 

  31. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12(3):245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cuzick J, Berney DM, Fisher G, Mesher D, Møller H, Reid JE, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. 2012;106(6):1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuzick J, Stone S, Fisher G, Yang ZH, North BV, Berney DM, et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer. 2015;113(3):382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shipitsin M, Small C, Giladi E, Siddiqui S, Choudhury S, Hussain S, et al. Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality. Proteome Sci. 2014;12:40.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer. 2014;111(6):1201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. 2015;21(11):2591–600.

    Article  CAS  PubMed  Google Scholar 

  37. Roth JA, Ramsey SD, Carlson JJ. Cost-effectiveness of a biopsy-based 8-protein prostate cancer prognostic assay to optimize treatment decision making in Gleason 3 + 3 and 3 + 4 early stage prostate cancer. Oncologist. 2015;20(12):1355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dalela D, Löppenberg B, Sood A, Sammon J, Abdollah F. Contemporary role of the Decipher® test in prostate cancer management: current practice and future perspectives. Rev Urol. 2016;18(1):1–9.

    PubMed  PubMed Central  Google Scholar 

  39. Jairath NK, Dal Pra A, Vince R, Dess RT, Jackson WC, Tosoian JJ, et al. A systematic review of the evidence for the Decipher genomic classifier in prostate cancer. Eur Urol. 2021;79(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  40. Kim HL, Li P, Huang HC, Deheshi S, Marti T, Knudsen B, et al. Validation of the Decipher test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019;22(3):399–405.

    Article  PubMed  Google Scholar 

  41. Herlemann A, Huang HC, Alam R, Tosoian JJ, Kim HL, Klein EA, et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2020;23(1):136–43.

    Article  PubMed  Google Scholar 

  42. Lobo JM, Trifiletti DM, Sturz VN, Dicker AP, Buerki C, Davicioni E, et al. Cost-effectiveness of the Decipher genomic classifier to guide individualized decisions for early radiation therapy after prostatectomy for prostate cancer. Clin Genitourin Cancer. 2017;15(3):e299–309.

    Article  PubMed  Google Scholar 

  43. Syed JS, Javier-Desloges J, Tatzel S, Bhagat A, Nguyen KA, Hwang K, et al. Current management strategy for active surveillance in prostate cancer. Curr Oncol Rep. 2017;19(2):11.

    Article  PubMed  Google Scholar 

  44. Kim HL, Li P, Huang H-C, Deheshi S, Marti T, Knudsen B, et al. Validation of the Decipher test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019;22(3):399–405. Decipher score, for patients with NCCN very low/low and intermediate PCa, was an independent predictor of adverse pathology and can help predict which patients are good candidates for active surveillance.

    Article  PubMed  Google Scholar 

  45. Herlemann A, Huang H-C, Alam R, Tosoian JJ, Kim HL, Klein EA, et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2020;23(1):136–43.

    Article  PubMed  Google Scholar 

  46. Oderda M, Cozzi G, Daniele L, Sapino A, Munegato S, Renne G, et al. Cell-cycle progression-score might improve the current risk assessment in newly diagnosed prostate cancer patients. Urology. 2017;102:73–8.

    Article  PubMed  Google Scholar 

  47. Lin DW, Zheng Y, McKenney JK, Brown MD, Lu R, Crager M, et al. 17-gene Genomic Prostate Score test results in the Canary Prostate Active Surveillance Study (PASS) Cohort. J Clin Oncol. 2020;38(14):1549–57. Oncotype Dx did not independently significantly improve risk stratification for adverse pathology on surveillance biopsy in active surveillance patients.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, et al. Molecular biomarkers in localized prostate cancer: ASCO guideline. J Clin Oncol. 2019;38(13):1474–94. This details the ASCO guidelines for molecular biomarkers in localized PCa. These state that tissue-based molecular biomarkers may improve risk stratification when added to standard clinical parameters, but their use should only be when their result is likely to affect clinical decision-making.

    Article  PubMed  Google Scholar 

  49. Syed JS, Nguyen KA, Nawaf CB, Bhagat AM, Huber S, Levi A, et al. Prostate zonal anatomy correlates with the detection of prostate cancer on multiparametric magnetic resonance imaging/ultrasound fusion–targeted biopsy in patients with a solitary PI-RADS v2–scored lesion. Urol Oncol. 2017;35(9):542.e19-.e24.

    Article  Google Scholar 

  50. Jambor I, Falagario U, Ratnani P, Perez IM, Demir K, Merisaari H, et al. Prediction of biochemical recurrence in prostate cancer patients who underwent prostatectomy using routine clinical prostate multiparametric MRI and Decipher genomic score. J Magn Reson Imaging. 2020;51(4):1075–85. This article demonstrated that lesion volume on mpMRI had the most potential to predict biochemical recurrence and performed similar to Decipher and outperformed the PI-RADS score and that the combination of prostate mpMRI and surgical variables performed similar to the combination of Decipher and surgical variables.

    Article  PubMed  Google Scholar 

  51. Punnen S, Stoyanova R, Kwon D, Reis Isildinha M, Soodana-Prakash N, Ritch Chad R, et al. Heterogeneity in genomic risk assessment from tissue based prognostic signatures used in the biopsy setting and the impact of magnetic resonance imaging targeted biopsy. J Urol. 2021;205(5):1344–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preston C. Sprenkle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokeshwar, S.D., Syed, J.S., Segal, D. et al. Optimal Use of Tumor-Based Molecular Assays for Localized Prostate Cancer. Curr Oncol Rep 24, 249–256 (2022). https://doi.org/10.1007/s11912-021-01180-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-021-01180-1

Keywords

Navigation