Skip to main content

Advertisement

Log in

Therapeutic Strategies for Hereditary Kidney Cancer

Current Oncology Reports Aims and scope Submit manuscript

Abstract

The study of hereditary forms of kidney cancer has vastly increased our understanding of metabolic and genetic pathways involved in the development of both inherited and sporadic kidney cancers. The recognition that diverse molecular events drive different forms of kidney cancers has led to the preclinical and clinical development of specific pathway-directed strategies tailored to treat distinct subgroups of kidney cancer. Here, we describe the molecular mechanisms underlying the pathogenesis of several different types of hereditary renal cancers, review their clinical characteristics, and summarize the treatment strategies for the management of these cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer facts and figures 2015. American Cancer Society, Atlanta, GA. 2015. Accessed Dec 22th 2015.

  2. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32. doi:10.1016/S0140-6736(09)60229-4.

    Article  CAS  PubMed  Google Scholar 

  3. Linehan WM. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res. 2012;22(11):2089–100. doi:10.1101/gr.131110.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro DP, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43. doi:10.1146/annurev.med.042808.171650. This review article summarizes the mechanism behind pathogenesis of various forms of kidney cancer and summarizes optimal treatment strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sudarshan S, Karam JA, Brugarolas J, Thompson RH, Uzzo R, Rini B, et al. Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol. 2013;63(2):244–51. doi:10.1016/j.eururo.2012.09.054.

    Article  CAS  PubMed  Google Scholar 

  6. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85. doi:10.1038/nrurol.2010.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15(1):55–64. doi:10.1038/nrc3844.

    Article  CAS  PubMed  Google Scholar 

  8. Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol. 1995;154(6):2010–4. discussion 4–5.

    Article  CAS  PubMed  Google Scholar 

  9. Duan DR, Pause A, Burgess WH, Aso T, Chen DY, Garrett KP, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269(5229):1402–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin Jr WG. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995;269(5229):1444–6.

    Article  CAS  PubMed  Google Scholar 

  11. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5. doi:10.1038/20459.

    Article  CAS  PubMed  Google Scholar 

  12. Walther MM, Choyke PL, Glenn G, Lyne JC, Rayford W, Venzon D, et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999;161(5):1475–9.

    Article  CAS  PubMed  Google Scholar 

  13. Metwalli AR, Linehan WM. Nephron-sparing surgery for multifocal and hereditary renal tumors. Curr Opin Urol. 2014;24(5):466–73. doi:10.1097/MOU.0000000000000094.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Herring JC, Enquist EG, Chernoff A, Linehan WM, Choyke PL, Walther MM. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol. 2001;165(3):777–81.

    Article  CAS  PubMed  Google Scholar 

  15. Jonasch E, McCutcheon IE, Waguespack SG, Wen S, Davis DW, Smith LA, et al. Pilot trial of sunitinib therapy in patients with von Hippel-Lindau disease. Ann Oncol. 2011;22(12):2661–6. doi:10.1093/annonc/mdr011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stamatakis L, Shuch B, Singer EA, Nix J, Truong H, Friend JC et al. Phase II trial of vandetanib in Von Hippel-Lindau-associated renal cell carcinoma. J Clin Oncol. 2013;31(suppl; abstr 4584).

  17. de Velasco G, Hamieh L, Mickey S, Choueiri TK. Optimizing systemic therapy for metastatic renal cell carcinoma beyond the first-line setting. Urol Oncol. 2015;33(12):538–45. doi:10.1016/j.urolonc.2015.08.007.

    Article  PubMed  Google Scholar 

  18. Ornstein DK, Lubensky IA, Venzon D, Zbar B, Linehan WM, Walther MM. Prevalence of microscopic tumors in normal appearing renal parenchyma of patients with hereditary papillary renal cancer. J Urol. 2000;163(2):431–3.

    Article  CAS  PubMed  Google Scholar 

  19. Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67(1):85–97. doi:10.1016/j.eururo.2014.04.029.

    Article  PubMed  Google Scholar 

  20. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73. doi:10.1038/ng0597-68.

    Article  CAS  PubMed  Google Scholar 

  21. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20(1):66–9. doi:10.1038/1727.

    Article  CAS  PubMed  Google Scholar 

  22. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60. doi:10.1158/1078-0432.CCR-06-0818.

    Article  CAS  PubMed  Google Scholar 

  23. Cancer Genome Atlas Research N, Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45. doi:10.1056/NEJMoa1505917. Reports comprehensive molecular characterization and identifies several genetic alterations associated with papillary renal cell cancer.

    Article  Google Scholar 

  24. Courthod G, Tucci M, Di Maio M, Scagliotti GV. Papillary renal cell carcinoma: a review of the current therapeutic landscape. Crit Rev Oncol Hematol. 2015;96(1):100–12. doi:10.1016/j.critrevonc.2015.05.008.

    Article  PubMed  Google Scholar 

  25. Linehan WM, Srinivasan R, Garcia JA. Non-clear cell renal cancer: disease-based management and opportunities for targeted therapeutic approaches. Semin Oncol. 2013;40(4):511–20. doi:10.1053/j.seminoncol.2013.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choueiri TK, Vaishampayan U, Rosenberg JE, Logan TF, Harzstark AL, Bukowski RM, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31(2):181–6. doi:10.1200/JCO.2012.43.3383.

    Article  CAS  PubMed  Google Scholar 

  27. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98(6):3387–92. doi:10.1073/pnas.051633798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zbar B, Tory K, Merino M, Schmidt L, Glenn G, Choyke P, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151(3):561–6.

    CAS  PubMed  Google Scholar 

  29. Merino MJ, Torres-Cabala C, Pinto P, Linehan WM. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol. 2007;31(10):1578–85. doi:10.1097/PAS.0b013e31804375b8.

    Article  PubMed  Google Scholar 

  30. Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106. doi:10.1086/376435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol. 2009;29(15):4080–90. doi:10.1128/MCB.00483-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shuch B, Linehan WM, Srinivasan R. Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther. 2013;13(6):711–9. doi:10.1586/era.13.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8(2):143–53. doi:10.1016/j.ccr.2005.06.017.

    Article  CAS  PubMed  Google Scholar 

  34. Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell. 2011;20(3):315–27. doi:10.1016/j.ccr.2011.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sandhu IS, Maksim NJ, Amouzougan EA, Gallion BW, Raviele AL, Ooi A. Sustained NRF2 activation in hereditary leiomyomatosis and renal cell cancer (HLRCC) and in hereditary tyrosinemia type 1 (HT1). Biochem Soc Trans. 2015;43(4):650–6. doi:10.1042/BST20150041.

    Article  CAS  PubMed  Google Scholar 

  36. Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell. 2011;20(4):511–23. doi:10.1016/j.ccr.2011.08.024.

    Article  CAS  PubMed  Google Scholar 

  37. Grubb III RL, Franks ME, Toro J, Middelton L, Choyke L, Fowler S, et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol. 2007;177(6):2074–9. doi:10.1016/j.juro.2007.01.155.

    Article  CAS  PubMed  Google Scholar 

  38. Srinivasan R, Su D, Stamatakis L, Siddiqui MM, Singer EA, Shuch B et al. Mechanism based targeted therapy for hereditary leiomyomatosis and renal cell cancer (HLRCC) and sporadic papillary renal cell carcinoma: interim results from a phase 2 study of bevacizumab and erlotinib. Eur J Cancer. 2014;50(Supplement 6).

  39. Sourbier C, Ricketts CJ, Matsumoto S, Crooks DR, Liao PJ, Mannes PZ, et al. Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell. 2014;26(6):840–50. doi:10.1016/j.ccell.2014.10.005. This article demonstrates that excess fumarate in FH deficient cells stimulate ABL1 which in turn stimulates aerobic glycolysis, making ABL1 a promising target in FH deficient tumors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomark Prev. 2002;11(4):393–400.

    Google Scholar 

  41. Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, et al. Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol. 2002;26(12):1542–52.

    Article  PubMed  Google Scholar 

  42. Pavlovich CP, Grubb 3rd RL, Hurley K, Glenn GM, Toro J, Schmidt LS, et al. Evaluation and management of renal tumors in the Birt-Hogg-Dube syndrome. J Urol. 2005;173(5):1482–6. doi:10.1097/01.ju.0000154629.45832.30.

    Article  PubMed  Google Scholar 

  43. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  44. Baba M, Furihata M, Hong SB, Tessarollo L, Haines DC, Southon E, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst. 2008;100(2):140–54. doi:10.1093/jnci/djm288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colomba EAL, Teuff GL, Eisen T, Stewart G, Fife K, Srinivasan A, et al. Escudier B. Metastatic chromophobe renal cell carcinoma treated with target therapies: a Renal Cross Chanel Group (RCCG) study. J Clin Oncol. 2015;33(suppl):abstr 4561.

    Google Scholar 

  46. Tannir NM, Jonasch E, Albiges L, Altinmakas E, Ng CS, Matin SF, et al. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): a randomized multicenter phase 2 trial. Eur Urol. 2015. doi:10.1016/j.eururo.2015.10.049.

    PubMed  Google Scholar 

  47. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):657–68. doi:10.1016/S0140-6736(08)61279-9.

    Article  CAS  PubMed  Google Scholar 

  48. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–56. doi:10.1056/NEJMra055323.

    Article  CAS  PubMed  Google Scholar 

  49. Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, Serra AL, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17(12):4071–81. doi:10.1158/1078-0432.CCR-11-0445.

    Article  CAS  PubMed  Google Scholar 

  50. Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario Jr FJ, Miles D, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF- D levels decrease. PLoS One. 2011;6(9):e23379. doi:10.1371/journal.pone.0023379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9869):817–24. doi:10.1016/S0140-6736(12)61767-X.

    Article  CAS  PubMed  Google Scholar 

  52. Kingswood JC, Jozwiak S, Belousova ED, Frost MD, Kuperman RA, Bebin EM, et al. The effect of everolimus on renal angiomyolipoma in patients with tuberous sclerosis complex being treated for subependymal giant cell astrocytoma: subgroup results from the randomized, placebo-controlled, Phase 3 trial EXIST-1. Nephrol Dial Transplant. 2014;29(6):1203–10. doi:10.1093/ndt/gfu013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst. 2008;100(17):1260–2. doi:10.1093/jnci/djn254.

    Article  CAS  PubMed  Google Scholar 

  54. Srirangalingam U, Walker L, Khoo B, MacDonald F, Gardner D, Wilkin TJ, et al. Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin Endocrinol. 2008;69(4):587–96. doi:10.1111/j.1365-2265.2008.03274.x.

    Article  CAS  Google Scholar 

  55. Gill AJ, Hes O, Papathomas T, Sedivcova M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588–602. doi:10.1097/PAS.0000000000000292.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14(15):2231–9. doi:10.1093/hmg/ddi227.

    Article  CAS  PubMed  Google Scholar 

  57. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188(6):2063–71. doi:10.1016/j.juro.2012.08.030. This paper reports the largest experience with the management of patients affected with SDHB-, SDHC- and SDHD-associated kidney cancer.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Sidana.

Ethics declarations

Conflict of Interest

Abhinav Sidana and Ramaprasad Srinivasan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidana, A., Srinivasan, R. Therapeutic Strategies for Hereditary Kidney Cancer. Curr Oncol Rep 18, 50 (2016). https://doi.org/10.1007/s11912-016-0537-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-016-0537-6

Keywords

Navigation