Skip to main content

Advertisement

Log in

Genomic Characterization of High-Grade Serous Ovarian Cancer: Dissecting Its Molecular Heterogeneity as a Road Towards Effective Therapeutic Strategies

  • Translational Oncology (L Vecchione, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

High-grade serous ovarian carcinoma (HGSOC) accounts for the majority of the ovarian cancer deaths, but over the last years little improvement in overall survival has been achieved. HGSOC is a molecularly and clinically heterogeneous disease. At genomic level, it represents a C-class malignancy having frequent gene losses (NF1, RB1, PTEN) and gains (CCNE1, MYC). HGSOC shows a simple mutational profile with TP53 nearly always mutated and with other genes mutated at low frequency. Importantly, 50 % of all HGSOCs have genetic features indicating a homologous recombination (HR) deficiency. HR deficient tumors are highly sensitive to PARP inhibitor anticancer agents, which exhibit synthetic lethality with a defective HR pathway. Transcriptionally, HGSOCs can be grouped into different molecular subtypes with distinct biology and prognosis. Molecular stratification of HGSOC based on these genomic features may result in improved therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Ross JS, Ali SM, Wang K, Palmer G, Yelensky R, Lipson D, et al. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies. Gynecol Oncol. 2013;130(3):554–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bowtell DD, Bohm S, Ahmed AA, Aspuria PJ, Bast Jr RC, Beral V, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15(11):668–79. In this Opinion article the authors outline seven research priorities which should improve outcome and possibly reduce incidence of such a deadly disease as high grade serous ovarian carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itamochi H, Kigawa J. Clinical trials and future potential of targeted therapy for ovarian cancer. Int J Clin Oncol. 2012;17(5):430–40.

    Article  CAS  PubMed  Google Scholar 

  4. Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25.

    CAS  PubMed  Google Scholar 

  5. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. This is the first comprehensive molecular characterization of high grade serous ovarian carcinoma that integrates mutation, copy number, expression and methylation data.

  6. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  7. Liu Z, Beach JA, Agadjanian H, Jia D, Aspuria PJ, Karlan BY, et al. Suboptimal cytoreduction in ovarian carcinoma is associated with molecular pathways characteristic of increased stromal activation. Gynecol Oncol. 2015.

  8. Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer. 2009;9(3):167–81.

    Article  CAS  PubMed  Google Scholar 

  9. Coward JI, Middleton K, Murphy F. New perspectives on targeted therapy in ovarian cancer. Int J Women’s Health. 2015;7:189–203.

    Article  CAS  Google Scholar 

  10. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5(11):1137–54. In this interesting review several aspects of the homologous recombination (HR) deficiency of epithelial ovarian carcinoma are described with the intent of highlighting potential biomarkers of HR in addition to the well characterized BRCA1/2 mutation status. In addition they emphasized the importance of the de novo and acquired resistance observed in tumors followed by PARP inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  12. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.

    Article  Google Scholar 

  13. Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A. 2011;108(30):12372–7. The authors performed systematic loss-of-function studies to identify essential genes in different cancer cell types. Suppression of PAX8, a gene found amplified in 16% of high grade serous ovarian carcinoma, selectively induced apoptotic cell death of ovarian cancer cells. High-throughput in vitro functional studies should be considered for identification of tumor vulnerabilities, which are potentially targetable.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010;10(11):803–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joshi PM, Sutor SL, Huntoon CJ, Karnitz LM. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J Biol Chem. 2014;289(13):9247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bajrami I, Frankum JR, Konde A, Miller RE, Rehman FL, Brough R, et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 2014;74(1):287–97. The authors provide evidences that CDK12 deficiency is a clinically relevant biomarker of PARP1/2 inhibitor sensitivity. This study investigated further the role of CDK12 as novel biomarker for high grade serous ovarian carcinoma targeted therapy.

    Article  CAS  PubMed  Google Scholar 

  18. Popova T, Manie E, Boeva V, Battistella A, Goundiam O, Smith NK, et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res. 2016.

  19. Ekumi KM, Paculova H, Lenasi T, Pospichalova V, Bosken CA, Rybarikova J, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 2015;43(5):2575–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(21):2654–63.

    Article  CAS  Google Scholar 

  22. Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104(12):2807–16.

    Article  CAS  PubMed  Google Scholar 

  23. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009;1(6–7):315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell. 2003;115(5):523–35.

    Article  CAS  PubMed  Google Scholar 

  25. Ceccaldi R, O’Connor KW, Mouw KW, Li AY, Matulonis UA, D’Andrea AD, et al. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 2015;75(4):628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(3):764–75.

    Article  CAS  Google Scholar 

  27. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(22):3555–61.

    Article  CAS  Google Scholar 

  28. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306(14):1557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  30. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.

    Article  CAS  PubMed  Google Scholar 

  31. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109–15.

    Article  CAS  PubMed  Google Scholar 

  32. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, et al. Homologous-recombination-deficient tumours are dependent on poltheta-mediated repair. Nature. 2015;518(7538):258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, Yu X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 2013;23(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langelier MF, Pascal JM. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol. 2013;23(1):134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian R, et al. Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(20):5806–15.

    Article  CAS  Google Scholar 

  36. Sohn I, Jung WY, Sung CO. Somatic hypermutation and outcomes of platinum based chemotherapy in patients with high grade serous ovarian cancer. Gynecol Oncol. 2012;126(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94. This is one of the first studies that have analyzed in depth using transcriptome, methylome and microRNA expression analysis paired primary and relapse high-grade serous ovarian carcinoma samples to highlight new mechanisms of platinum-based chemotherapy resistance.

    Article  CAS  PubMed  Google Scholar 

  39. Martins FC, Santiago I, Trinh A, Xian J, Guo A, Sayal K, et al. Combined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier. Genome Biol. 2014;15(12):526.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, et al. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(21):5960–71.

    Article  CAS  Google Scholar 

  41. Etemadmoghadam D, George J, Cowin PA, Cullinane C, Kansara M, Australian Ovarian Cancer Study G, et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS One. 2010;5(11):e15498.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J, et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci U S A. 2013;110(48):19489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(16):5198–208.

    Article  CAS  Google Scholar 

  44. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  45. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst. 2014;106(10). The authors robustly validated the four molecular subtypes of high grade serous ovarian carcinoma previously described using three independent patient cohorts in order to add a significant prognostic value to the subtypes.

  46. Parikh A, Lee C, Joseph P, Marchini S, Baccarini A, Kolev V, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 2014;5:2977.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell. 2013;23(2):186–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013;110(24):9845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurrey NK, Amit K, Bapat SA. Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005;97(1):155–65.

    Article  CAS  PubMed  Google Scholar 

  50. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.

    Article  CAS  PubMed  Google Scholar 

  51. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83.

    Article  CAS  PubMed  Google Scholar 

  52. Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(13):1302–8.

    Article  CAS  Google Scholar 

  53. Gourley G. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J Clin Oncol. 2014;32.

Download references

Acknowledgments

The author would like to thank Professor René Bernards (NKI/AVL Amsterdam) and Astrid J Bosma (NKI/AVL Amsterdam) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Mittempergher.

Ethics declarations

Conflict of Interest

Lorenza Mittempergher declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Translational Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittempergher, L. Genomic Characterization of High-Grade Serous Ovarian Cancer: Dissecting Its Molecular Heterogeneity as a Road Towards Effective Therapeutic Strategies. Curr Oncol Rep 18, 44 (2016). https://doi.org/10.1007/s11912-016-0526-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-016-0526-9

Keywords

Navigation