Skip to main content
Log in

A Review of Recent Developments in Image-Guided Radiation Therapy in Cervix Cancer

  • Gynecologic Cancers (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Brachytherapy is an essential part of radiotherapy treatment for cervical cancer. Over the decades, it has evolved from manual loading of radium and caesium to remote after-loaders and from low-dose and medium-dose rates to high-dose rates. Over the past 10 years, 3D image-based Brachytherapy has evolved and established itself as the gold standard, improving local control and overall survival, and significantly reducing toxicity. In this article, we review some of the available literature on gynaecologic brachytherapy, more specifically on topics such as dose rates, high-dose-rate/pulsed-dose-rate (HDR/PDR) brachytherapy and image-based brachytherapy (IBBT), and present some of the evidence that establishes IBBT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachaud JM, Fu RC, Delannes M, et al. Non-randomized comparative study of irradiationalone or in combination with surgery in stage Ib, IIa and “proximal” IIb carcinoma of the cervix. Radiother Oncol. 1991;22(2):104–10.

    Article  PubMed  CAS  Google Scholar 

  2. Barillot I, Horiot JC, Pigneux J, et al. Carcinoma of the intact uterine cervix treated with radiotherapy alone: a French cooperative study: update and multivariate analysis of prognostic factors. Int J Radiat Oncol Biol Phys. 1997;38:969–78.

    Article  PubMed  CAS  Google Scholar 

  3. Eifel PJ. Radiotherapy versus radical surgery for gynecologic neoplasms: carcinomas of the cervix and vulva. Front Radiat Ther Oncol. 1993;27:130–42.

    PubMed  CAS  Google Scholar 

  4. Landoni F, Maneo A, Colombo A, et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet. 1997;350:535–41.

    Article  PubMed  CAS  Google Scholar 

  5. Björkholm E. The development of brachytherapy and complementary external irradiation in the treatment of cervical carcinoma .Radiumhemmet, Stockholm 1910–1996. In: Kovacs G, editor. Integration of external beam therapy and brachytherapy in the treatment of cervix cancer: clinical, physical and biological aspects. Brussels: ESTRO; 1997. p. 71–6.

    Google Scholar 

  6. Hunter RD, Davidson SE. LDR brachytherapy for treating cervix cancer: Changing dose rate. In: Joslin CAF, Flynn A, Hall EJ, editors. Principles and practice of brachytherapy: Using after-loading systems. London: Arnold Publishers; 2001. p. 343–53.

    Google Scholar 

  7. Eifel PJ, Thoms WW, Smith TL, et al. The relationship between brachytherapy dose and outcome in patients with bulky endo-cervical tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1994;28:113–9.

    Article  PubMed  CAS  Google Scholar 

  8. Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, Radiation and Adjuvant Hysterectomy compared with Radiation and Adjuvant Hysterectomy for Bulky Stage IB Cervical carcinoma. NEJM. 1999;340(15):1154–61.

    Article  PubMed  CAS  Google Scholar 

  9. Morris M, Eifel PJ, LU J, et al. Pelvic Radiation with Concurrent Chemotherapy compared with Pelvic and Para-aortic Radiation for High-Risk Cervical cancer. NEJM. 1999;340(15):1137–43.

    Article  PubMed  CAS  Google Scholar 

  10. Rose PG, Bundy BN, Watkins EB, et al. Concurrent Cisplatin-based Radiotherapy and Chemotherapy for locally advanced Cervical Cancer. NEJM. 1999;340(15):1144–53.

    Article  PubMed  CAS  Google Scholar 

  11. Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after Concomitant chemotherapy and Radiotherapy for Cancer of the Uterine Cervix; A systematic review and Meta-Analysis. Lancet. 2001;358:781–6.

    Article  PubMed  CAS  Google Scholar 

  12. Chemoradiotherapy for Cervical Cancer Meta-analysis collaboration. Reducing uncertainties about the effect of Chemo-radiotherapy for Cervical cancer: a systematic review and Individual patient data meta-analysis from 18 randomised trials. J Clin Oncol. 2008;26(35):5902–12.

    Article  Google Scholar 

  13. Eifel PJ, Levenback C, Wharton JT, Oswald MJ. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1995;32:1289–300.

    Article  PubMed  CAS  Google Scholar 

  14. Fellner C, Pötter R, Knocke TH, et al. CT-based treatment planning in cervix carcinoma – dose reduction to the rectum and its impact on the dose to the CTV: a retrospective analysis. Radiother Oncol. 2001;60 suppl 1:2.

    Article  Google Scholar 

  15. Fellner C, Pötter R, Knocke TH, Wambersie A. Comparison of radiography- and computed tomography-based treatment planning in cervix cancer brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol. 2001;58:53–62.

    Article  PubMed  CAS  Google Scholar 

  16. Gerstner N, Wachter S, Reinstadler E, et al. Radiography compared to sectional image (CT/MR) based 3D treatment planning in cervix cancer brachytherapy: results of a prospective comparative trial. Radiother Oncol. 2001;60 suppl 1:3.

    Article  Google Scholar 

  17. Thomas L, Lasareilles O, Chemin A. CT assisted treatment planning in PDR brachytherapy of uterine cervix carcinoma: feasibility and dosimetric assessment. Radiother Oncol. 2001;60 suppl 1:2.

    Article  Google Scholar 

  18. Krempien R, Hoppe H, Kahrs L, et al. Projector-based Augmented reality for intuitive Intraoperative guidance in Image-Guided 3D Interstitial Brachytherapy. Int J Radiat Oncol Biol Phys. 2008;70(3):944–52.

    Article  PubMed  Google Scholar 

  19. Shah AP, Strauss JB, Gielda BT, et al. Toxicity associated with bowel or bladder puncture during Gynecologic Interstitial Brachytherapy. Int J Radiat Oncol Biol Phys. 2010;77(1):171–9.

    Article  PubMed  Google Scholar 

  20. Leborgne F, Fowler JF, Leborgne JH, et al. Fractionation in medium dose rate brachytherapy of cancer of the cervix. Int J Radiat Oncol Biol Phys. 1996;35(5):907–14.

    Article  PubMed  CAS  Google Scholar 

  21. Muirhead W, Green LS. Carcinoma of the cervix: five-year results and sequelae of treatment. Am J Obstet Gynecol. 1968;101:744.

    PubMed  CAS  Google Scholar 

  22. Newman G. Increased morbidity following the introduction of remote after-loading, with increased dose rate, for cancer of the cervix. Radiother Oncol. 1996;39:97–103.

    Article  PubMed  CAS  Google Scholar 

  23. Noyes WR, Peters NE, Thomadsen BR, et al. Impact of “optimized” treatment planning for tandem and ring, and tandem and ovoids, using high dose rate brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 1995;31(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  24. Orton CG, Seyedsadr M, Somnay A. Comparison of high and low dose rate remote after-loading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys. 1991;21(6):1425–34.

    Article  PubMed  CAS  Google Scholar 

  25. Patel FD, Sharma SC, Negi PS, et al. Low dose rate vs. high dose rate brachytherapy in the treatment of carcinoma of the uterine cervix: a clinical trial. Int J Radiat Oncol Biol Phys. 1994;28:335–41.

    Article  PubMed  CAS  Google Scholar 

  26. Perez CA, Grigsby PW, Nene SM, et al. Effect of tumor size on the prognosis of carcinoma of the uterine cervix treated with irradiation alone. Cancer. 1992;69:2796–806.

    Article  PubMed  CAS  Google Scholar 

  27. Stehman FB, Bundy BN, DiSaia PJ, Keys HM, Larson JE, Fowler WC. Carcinoma of the cervix treated with radiation therapy: 1. A multivariate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer. 1991;67:2776–85.

    Article  PubMed  CAS  Google Scholar 

  28. Perez CA, Breaux S. Madoc–Jones H et al. Radiation therapy alone in the treatment of carcinoma of uterine cervix: I. Analysis of tumor recurrence. Cancer. 1983;51:1393–402.

    Article  PubMed  CAS  Google Scholar 

  29. Perez CA, Camel HM, Kuske RR, et al. Radiation therapy alone in the treatment of carcinoma of the uterine cervix: a 20-year experience. Gynecol Oncol. 1986;23:127–40.

    Article  PubMed  CAS  Google Scholar 

  30. Lanciano RM, Won M, Coia LR, Hanks GE. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: a final report of the1973 and 1978 Patterns of Care Studies. Int J Radiat Oncol Biol Phys. 1991;20:667–76.

    Article  PubMed  CAS  Google Scholar 

  31. Perez CA, Grigsby PW, Lockett MA. Radiation morbidity in carcinoma of the uterine cervix: dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys. 1999;44:855–66.

    Article  PubMed  CAS  Google Scholar 

  32. Roeske JC, Mundt AJ, Halpern H, et al. Late rectal sequelae following definitive radiation therapy for carcinoma of the uterine cervix: a dosimetric analysis. Int J Radiat Oncol Biol Phys. 1997;37:351–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kottmeier HL, Gray MJ. Rectal and bladder injuries in relation to radiation dosage in carcinoma of cervix. Am J Obstet Gynecol. 1961;82:74–82.

    PubMed  CAS  Google Scholar 

  34. Perez CA, Fox S, Lockett MA, et al. Impact of dose in outcome of irradiation alone in carcinoma of the uterine cervix: analysis of two different methods. Int J Radiat Oncol Biol Phys. 1991;21:885–98.

    Article  PubMed  CAS  Google Scholar 

  35. Barnes EA, ThomasG G, AckermanI I, et al. Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix. IJGC. 2007;17(4):821–6.

    CAS  Google Scholar 

  36. Watkins JM, Kearney PL, Opfermann KJ, Ackerman SJ, et al. Ultrasound-guided tandem placement for low-dose-rate brachytherapy in advanced cervical cancer minimizes risk of intraoperative uterine perforation. Ultrasound Obstet Gynaecol. 2011;37(2):241–4.

    Article  CAS  Google Scholar 

  37. Henschke UK, Hilaris BS, Mahan GD. Remote afterloading with intracavitary applicators. Radiology. 1964;83:344–5.

    PubMed  CAS  Google Scholar 

  38. O’Connell D, Howard N, Joslin CAF, et al. A new remotely controlled unit for the treatment of uterine carcinoma. Lancet. 1965;2:570–1.

    Article  PubMed  Google Scholar 

  39. Wakabayashi M, Irie G, Sugawara T, et al. The trial production of remote after-loading system unit. Japan. Jpn J Clin Radiol. 1966;11:678–48.

    CAS  Google Scholar 

  40. Steel G editor; The dose rate effect: Brachytherapy and Targeted Radiotherapy. Basic Clinical Radiobiology, 3rd Edition 2002. Published by Arnold publishers, Oxford Univeristy Press Inc.

  41. Eifel PJ. High-dose-rate brachytherapy for carcinoma of the cervix: high tech or high risk? Int J Radiat Oncol Biol Phys. 1992;24(2):383–6.

    Article  PubMed  CAS  Google Scholar 

  42. Brenner DJ, Hall EJ. Fractionated High-Dose rate versus low-dose rate regimens for intracavitary brachytherapy of the cervix. General considerations based on radiobiology. Br J Radiol. 1991;64:133–41.

    Article  PubMed  CAS  Google Scholar 

  43. Hanish PH, Furre T, Olsen DR, et al. Radiobiological responses for two cell lines following continuous low dose-rate and pulsed-dose rate brachytherapy. Acta Oncol. 2007;46:602–11.

    Article  Google Scholar 

  44. Rodrigus P, De Winter K, Venselaar JL, Leers WH. Evaluation of late morbidity in patients with carcinoma of the uterine cervix following a dose rate change. Radiother Oncol. 1997;42(2):137–41.

    Article  PubMed  CAS  Google Scholar 

  45. Sherrah-Davies E. Morbidity following Low-dose-rate Selectron therapy for cervical cancer. Clin Radiol. 1985;36:131–9.

    Article  PubMed  CAS  Google Scholar 

  46. Erickson B, Eifel P, Moughan J, et al. Patterns of Brachytherapy Practice for patients with carcinoma of Cervix (1996–99): a patterns of care study. Int J Radiat Biol Phys. 2005;63(4):1083–92.

    Article  Google Scholar 

  47. Nag S, Erickson B, Thomadsen B, et al. The American Brachytherapy Society Recommendations for high_dose rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48(1):201–11.

    Article  PubMed  CAS  Google Scholar 

  48. Narayan K, Dyk SV, Bernshaw D, et al. Comparative study of LDR (Manchester system) and HDR Image-Guided conformal Brachytherapy of cervical cancer: patterns of failure, late complications and survival. Int J Radiat Oncol Biol Phys. 2009;74(5):1529–35.

    Article  PubMed  Google Scholar 

  49. Gerszten K, William E, Gooding WE, Lin Y, et al. A single institutional experience with definitive radiotherapy for cervical cancer using both high- and low-dose-rate brachytherapy. Gynaecol Oncol. 2006;102:500–7.

    Article  Google Scholar 

  50. Bachtiary B, Dewitt A, Pintilie M, et al. Comparison of late toxicity between continuous low-dose-rate and pulsed-dose-rate Brachytherapy in Cervical cancer patients. Int J Radiat Oncol Biol Phys. 2005;63(4):1077–82.

    Article  PubMed  Google Scholar 

  51. Hellebust TP, Kirisits C, Berger D, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstructionin 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96:153–60.

    Article  PubMed  Google Scholar 

  52. Nag S, Cardenes H, Chang S, et al. Proposed guidelines for image-based intracavitary brachytherapy for Cervical carcinoma: report from image-guided brachtherapy working group. Int J Radiation Oncology Biol. 2004;60(4):1160–72.

    Article  Google Scholar 

  53. Kirisits C, Lang S, Dimopoulos J, et al. Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer. Radiother Oncol. 2006;81:269–75.

    Article  PubMed  Google Scholar 

  54. Haie-Meder C, Pötter R, van Limbergen E, et al. Recommendations from the Gynaecological (GYN) GEC ESTRO Working Group (Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV). Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  55. Pötter R, Heie-Meder C, Limbergen E, et al. Recommendations from the Gynaecological (GYN) GEC ESTRO Working Group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy – 3D volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  56. Shin KH, Kim TH, Cho JK, et al. CT-Guided Intracavitary radiotherapy for Cervical cancer: comparison of conventional point A plan with Clinical Target Volume-based Three-Dimensional plan using dose–volume parameters. Int J Radiat Oncol Biol Phys. 2006;64(1):197–204.

    Article  PubMed  Google Scholar 

  57. Kang HC, Shin KH, Park SY, et al. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507–13.

    Article  PubMed  Google Scholar 

  58. Datta NR, Srivasta A, Das KJM, et al. Comparative assessment of doses to tumour, rectum and bladder as evaluated by orthogonal radiographs vs. computer enhanced computed tomography-based intracavitary brachytherapy in Cervical cancer. Brachytherapy. 2006;5:223–9.

    Article  PubMed  Google Scholar 

  59. Sun LM, Huang EY, Ko SF, et al. Computer Tomography-assisted three-dimensional technique to assess rectal and bladder wall dose in intracavitary brachytherapy for cervical cancer. Radiother Oncol. 2004;71:333–7.

    Article  PubMed  Google Scholar 

  60. Koom WS, Sohn DK, Kim JY. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: Preliminary demonstration of correlation between dose-volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol Biol Phys. 2007;68(5):1446–54.

    Article  PubMed  Google Scholar 

  61. Charra-Brunaud C, Harter V, Delannes M, et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103:305–13.

    Article  PubMed  Google Scholar 

  62. Haack S, Nielson SK, Lindegaard JC, et al. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009;91:187–93.

    Article  PubMed  Google Scholar 

  63. Viswanathan AN, Dimopoulos J, Kirisits C, et al. Computed Tomography versus Magnetic Resonance Imaging-based contouring in Cervical Cancer Brachytherapy: results of a prospective trial and preliminary guidelines for standardised contours. Int J Radiat Oncol Biol Phys. 2007;68(2):491–8.

    Article  PubMed  Google Scholar 

  64. Pötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83:148–55.

    Article  PubMed  Google Scholar 

  65. Zwahlen D, Jezioranski J, Chan P, et al. Magnetic Resonance Imaging-guided intracavitary Brachytherapy for cancer of the cervix. Int J Radiat Oncol Biol Phys. 2009;74(4):1157–64.

    Article  PubMed  Google Scholar 

  66. Dimopolous JCA, Lang S, Kirisits C, et al. Dose–volume histogram parameters and local tumor control in Magnetic resonance image–guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2009;75(1):56–63.

    Article  Google Scholar 

  67. Tanderup K, Nielsen SK, Nyvang GB, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94:173–80.

    Article  PubMed  Google Scholar 

  68. Jamema SV, Kirisits C, Mahanshetty U, et al. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subsetof tandem/ovoid cases. Radiother Oncol. 2010;97:501–6.

    Article  PubMed  Google Scholar 

  69. Pötter R, Georg P, Dimopoulos J, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100:116–23.

    Article  PubMed  Google Scholar 

  70. Schmid MP, Kirisits C, Nesvacil N, et al. Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: a comparison of spatial dose distribution within a matched-pair analysis. Radiother Oncol. 2011;100:468–72.

    Article  PubMed  Google Scholar 

  71. Beriwal S, Kannan N, Kim H, et al. Three-dimensional High Dose Rate Intracavitary Image-guided Brachytherapy for the Treatment of Cervical Cancer Using a Hybrid Magnetic Resonance Imaging/Computed Tomography Approach: feasibility and Early Results. Clin Oncol. 2011;23:685–90.

    Article  CAS  Google Scholar 

  72. Nomden CN, De Leeuw AAC, Moreland MA, et al. Clinical use of the utrecht applicator for combined Intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiar Oncol Biol Phys. 2012;82(4):1424–30.

    Article  Google Scholar 

  73. Jürgenliemk-Schulz IM, Lang S, Tanderup K, et al. Variation of treatment planning parameters (D90 HR-CTV, D2cc for OAR) for cervical cancer tandem ring brachytherapy in a multicentre setting: comparison of standard planning and 3D image-guided optimisation based on a joint protocolfor dose–volume constraints. Radiother Oncol. 2010;94:339–45.

    Article  PubMed  Google Scholar 

  74. Beriwal S, Bhatnagar A, Heron DE, et al. High-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy. 2006;5:218–22.

    Article  PubMed  Google Scholar 

  75. Gueda F, Venselaar J, Hoskin P, et al. Patterns of care of Brachytherapy in Europe: updated results. Radiother Oncol. 2010;97:514–20.

    Article  Google Scholar 

  76. Tan LT. Implementation of Image-guided Brachytherapy for Cervix Cancer in the UK: progress Update. Clin Oncol. 2011;23:681–84.

    Article  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmat H. Sadozye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadozye, A.H., Reed, N. A Review of Recent Developments in Image-Guided Radiation Therapy in Cervix Cancer. Curr Oncol Rep 14, 519–526 (2012). https://doi.org/10.1007/s11912-012-0275-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0275-3

Keywords

Navigation