Skip to main content

Advertisement

Log in

FGF Receptor Inhibitors: Role in Cancer Therapy

Current Oncology Reports Aims and scope Submit manuscript

Abstract

The fibroblast growth factor (FGF) signaling pathway is implicated as a key driver of tumor progression and growth via the dysregulation of cell proliferation, differentiation, survival, and angiogenesis in multiple tumor types. In addition, it may serve as a mechanism of resistance to antivascular endothelial growth factor targeted therapy. As such this pathway has emerged as a relevant therapeutic target, and several agents that can inhibit or modulate its signaling are in various stages of development. This review will summarize the current clinical status of agents targeting FGF receptors. In addition, strategies to accelerate the clinical development of these targeted agents will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8:235–53.

    Article  PubMed  CAS  Google Scholar 

  2. •• Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Canc. 2010;10:116–29. Excellent review of FGF signalling and role in cancer.

    Article  CAS  Google Scholar 

  3. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41.

    Article  PubMed  CAS  Google Scholar 

  4. Naski MC, Ornittz DM. FGF signalling in skeletal development. Front Biosci. 1998;3:781–94.

    Google Scholar 

  5. Chellaiah AT, McEwen DG, Werner S, et al. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem. 1994;269:11620–7.

    PubMed  CAS  Google Scholar 

  6. Eswarakumar VP, Lax I, Schlessinger J. Cellular signalling of fibroblast growth factor receptors. Cytokine Growth Factor Rec. 2005;16:139–49.

    Article  CAS  Google Scholar 

  7. Altomare DA, Testa JR. Perturbations of the AKT signalling pathway in human cancer. Oncogene. 2005;24:7455–64.

    Article  PubMed  CAS  Google Scholar 

  8. Hart KC, Robertson SC, Kanemitsu NY, et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000;19:3309–20.

    Article  PubMed  CAS  Google Scholar 

  9. Kang S, Elf S, Dong T, et al. Fibroblast growth factor receptor 3 associates with and tyrosine phosphorylates p90 RSK2, leading to RSK2 activation that mediates hematopoietic transformation. Mol Cell Biol. 2009;29:2105–17.

    Article  PubMed  CAS  Google Scholar 

  10. Thien CB, Langodn WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev Mol Cell Biol. 2001;2:294–307.

    Article  CAS  Google Scholar 

  11. Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.

    Article  PubMed  CAS  Google Scholar 

  12. Kandel J, Bossy-Wetzel E, Radvanyi F, et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell. 1991;66:1095–104.

    Article  PubMed  CAS  Google Scholar 

  13. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    PubMed  CAS  Google Scholar 

  14. Risau W. Angiogenic growth factors. Prog Growth Factor Res. 1990;2:71–9.

    Article  PubMed  CAS  Google Scholar 

  15. Fujii T, Kuwano H. Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cell Dev Biol Anim. 2010;46:487–91.

    Article  PubMed  Google Scholar 

  16. Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun. 1992;189:824–31.

    Article  PubMed  CAS  Google Scholar 

  17. Compagni A, Wilgenbus P, Impagnatiello M-A, et al. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 2000;60:7163–9.

    PubMed  CAS  Google Scholar 

  18. Giavazzi R, Sennino B, Coltrini D, et al. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol. 2003;162:1913–26.

    Article  PubMed  CAS  Google Scholar 

  19. Nissen LJ, Cao R, Hedlund E-M, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularisation and metastasis. J Clin Invest. 2007;117:2766–77.

    Article  PubMed  CAS  Google Scholar 

  20. • Lieu C, Heymach J, Overman M, et al. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res. 2011;17:1–10. The role of targeting FGF signalling in antiangiogenic therapy.

    Article  Google Scholar 

  21. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signalling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    Article  PubMed  CAS  Google Scholar 

  22. Allen E, Walters I, Hanahan D. Brivanib, a dual FGF/VEGF inhibitor, is active both as first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res. 2001;17:5299–310.

    Article  Google Scholar 

  23. Pietras K, Pahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signalling in the proangiogenic stroma revealed by pharmacological targeting. PLos Med. 2008;5:19.

    Article  Google Scholar 

  24. Kopetz S, Hoff PM, Morris JS, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 2009;24:8252.

    Google Scholar 

  25. Batchelor TT, Sorenson AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  PubMed  CAS  Google Scholar 

  26. Birrer MJ, Johnson ME, Hao K, et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysus identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol. 2007;25:2281–7.

    Article  PubMed  CAS  Google Scholar 

  27. Dorkin TJ, Robinson MC, Marsh C, et al. FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. Oncogene. 1999;18:2755–61.

    Article  PubMed  CAS  Google Scholar 

  28. Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 1999;5:1063–71.

    PubMed  CAS  Google Scholar 

  29. Ropiquet F, Giri D, Kwabi-Addo B, et al. Increased expression of fibroblast growth factor in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Res. 2000;60:4245–50.

    PubMed  CAS  Google Scholar 

  30. Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endo-rel Cancer. 2004;11:709–24.

    Article  CAS  Google Scholar 

  31. Dorkin TJ, Robinson MC, Marsh C, et al. αFGF immunoreactivity in prostate cancer and its co-localization with bFGF and FGF8. J Path. 1999;189:564–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mattila MM, Harkonen PL. Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev. 2007;18:257–66.

    Article  PubMed  CAS  Google Scholar 

  33. Shimokawa T, Furukawa Y, Sakai M, et al. Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the [beta}-catenin/T-cell factor complex. Cancer Res. 2003;63:6116–20.

    PubMed  CAS  Google Scholar 

  34. Courjal F, Cuny M, Simony-Lafontaine J, et al. Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 1997;57:4360–7.

    PubMed  CAS  Google Scholar 

  35. Turner N, Pearson A, Sharpe R, et al. FGFR1 expression drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70:2085–94.

    Article  PubMed  CAS  Google Scholar 

  36. Freier K, Schwaenen C, Sticht C, et al. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol. 2007;43:60–6.

    Article  PubMed  CAS  Google Scholar 

  37. Ishizuka T, Tanabe C, Sakamoto H, et al. Gene amplification profiling of esophageal squamous cell carcinoimas by DNA array CGH. Biochem Biophys Res Commun. 2002;296:152–5.

    Article  PubMed  CAS  Google Scholar 

  38. Gorringe KL, Jacobs S, Thompson ER, et al. High resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res. 2007;13:4731–9.

    Article  PubMed  CAS  Google Scholar 

  39. Dutt A, Ramos AH, Hammerman PS, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoA ONE. 2011;6:e20351.

    Article  CAS  Google Scholar 

  40. Weiss J, Sos ML, Seidel D, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2:62ra93.

    Article  PubMed  CAS  Google Scholar 

  41. Edwards J, Krishna NS, Witton CJ, Bartkett JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res. 2003;9:5271–81.

    PubMed  CAS  Google Scholar 

  42. Simon R, Richter J, Wagner U, et al. High-throughput tissue microarray analysis of 3p25 [RAF1] and 8p12 [FGFR1] copy number alterations in urinary bladder cancer. Cancer Res. 2001;61:4514–9.

    PubMed  CAS  Google Scholar 

  43. Yamaguchi F, Saya H, Bruner JM, Morrison RS. Differential expression of 2 fibroblast growth factor receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA. 1994;91:484–8.

    Article  PubMed  CAS  Google Scholar 

  44. Missiaglia E, Selfe J, Hamdi M, et al. Genomic imbalances in rhadomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosom Cancer. 2009;48:455–67.

    Article  PubMed  CAS  Google Scholar 

  45. Kunii K, Davis L, Gorenstein J, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68:2340–8.

    Article  PubMed  CAS  Google Scholar 

  46. Turner N, Lambros MB, Horlings HM, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29:2013–23.

    Article  PubMed  CAS  Google Scholar 

  47. Azuma K, Tsurutani J, Sakai K, et al. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure. Biochem and Biophys Res Comm. 2011;407:219–24.

    Article  CAS  Google Scholar 

  48. Stacey SN, Manolescu P, Sulem P, et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2008;40:704–6.

    Google Scholar 

  49. • Nord H, Segersten U, Sundgren J, et al. Focal amplifications are associated with high grade and recurrences in stage Ta bladder carcinoma. Int J Cancer. 2009;126:1390–402. Evidence for the role of FGF amplifications in bladder cancer.

    Google Scholar 

  50. Avet-Loiseau H, Facon T, Davier A, et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone de Myelome. Cancer Res. 1999;59:4546–50.

    PubMed  CAS  Google Scholar 

  51. Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood. 2006;107:4039–46.

    Article  PubMed  CAS  Google Scholar 

  52. Yagasaki F, Wakao D, Yokoyama Y, et al. Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Res. 2001;61:8371–4.

    PubMed  CAS  Google Scholar 

  53. Sonvilla G, Allersofter S, Heinzle C, et al. Fibroblast growth factor receptor 3-IIIC mediates colorectal cancer growth and migration. Br J Cancer. 2010;102:1145–56.

    Article  PubMed  CAS  Google Scholar 

  54. Van Rhijn BW, Montironi R, Zwarthoff EC, et al. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198:245–51.

    Article  PubMed  Google Scholar 

  55. Rosty C, Aubriot M-H, Cappellen D, et al. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutations. Mol Cancer. 2005;4:15.

    Article  PubMed  Google Scholar 

  56. Hernandez S, de Muga S, Agell L, et al. FGFR3 mutations in prostate cancer: association with low grade tumors. Mod Pathol. 2009;22:848–56.

    PubMed  CAS  Google Scholar 

  57. di Martino E, L’Hote CG, Kennedy W, et al. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene. 2009;28:4306–16.

    Article  PubMed  Google Scholar 

  58. Dutt A, Salvesen HB, Chen TH, et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci USA. 2008;105:8713–7.

    Article  PubMed  CAS  Google Scholar 

  59. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dec. 2002;16:1446–65.

    Article  CAS  Google Scholar 

  60. Taylor JG, Cheuk AT, Tsang PS, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest. 2009;119:3395–407.

    PubMed  CAS  Google Scholar 

  61. Okamoto I, Kaneda H, Satoh T, et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther. 2010;9:2825–33.

    Article  PubMed  CAS  Google Scholar 

  62. Mross K, Stefanic M, Gmehling D, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16:311–9.

    Article  PubMed  CAS  Google Scholar 

  63. du Bois A, Huober J, Stopfer P, et al. A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies. Ann Oncol. 2010;21:370–5.

    Article  PubMed  Google Scholar 

  64. Kropff M, Kienast J, Bisping G, et al. An open-label dose-escalation study of BIBF 1120 in patients with relapsed or refractory multiple myeloma. Anticancer Res. 2009;29:4233–8.

    PubMed  CAS  Google Scholar 

  65. Lee CP, Attard G, Poupard L, et al. A phase I study of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) in patients with advanced solid malignancies. J Clin Oncol. 2005;23:3054.

    Google Scholar 

  66. Reck M, Kaiser R, Eschbach C, et al. A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol. 2011;22:1374–81.

    Article  PubMed  CAS  Google Scholar 

  67. Ledermann JA, Hackshaw A, Kaye S, et al. Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. J Clin Oncol. 2011;29:3798–804.

    Article  PubMed  CAS  Google Scholar 

  68. Bouche O, Maindrault-Goeve F, Ducreux M, et al. Phase II trial of weekly alternating sequential BIBF 1120 and afatinib for advanced colorectal cancer. Anticancer Res. 2001;31:2271–81.

    Google Scholar 

  69. Molife R, de Bono JS, Bell S, et al.: A phase II trial to compare BIBF 1120 or BIBW 2992 monotherapy versus a combination of sequential administration of both medications in patients with hormone refractory prostate cancer (HRPC). Presented at the ASCO Genitourinary Cancers Symposium. Orlando FLA, USA; February 26–28, 2009.

  70. • Sarker D, Molife R, Evans TRJ, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res. 2008;14:2075–81. First published phase I study of a triple angiokinase inhibitor.

    Article  PubMed  CAS  Google Scholar 

  71. Kim KB, Chesney J, Robinson D, et al. Phase I/II and pharmacodynamic study of dovotinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res. 2011;17:7451–61.

    Article  PubMed  CAS  Google Scholar 

  72. Andre F, Baselga J, Ellis MJ, et al. A multicenter, open-label phase II trial of dovotinib, and FGFR1 inhibitor, in FGFR1 amplified and non-amplified metastatic breast cancer. Presented at the ASCO Annual Meeting. Chicago ILL, USA; June 3–7, 2011.

  73. Matsui J, Yamamoto Y, Funahashi Y, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122:664–71.

    Article  PubMed  CAS  Google Scholar 

  74. Yamada K, Yamamoto N, Yamada Y, et al. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid umors. Cancer Res. 2011;17:2528–37.

    Article  CAS  Google Scholar 

  75. Keizer RJ, Gupta A, Mac Gillavry MR, et al. A model of hypertension and proteinuria in cancer patients treated with the antiangiogenic agent E7080. J Pharmacokinet Pharmacodyn. 2010;37:347–63.

    Article  PubMed  CAS  Google Scholar 

  76. Glen H, Boss D, Evans TR, et al. A phase I dose finding study of E7080 in patients (pts) with advanced malignancies. J Clin Oncol, ASCO Annual Meeting Proceedings Part I 25 (18S):14073.

  77. Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011;7:617–24.

    Article  PubMed  CAS  Google Scholar 

  78. Huynh H, Ngo VC, Fargnoli J, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 2008;14:6146–53.

    Article  PubMed  CAS  Google Scholar 

  79. Jonker DJ, Rosen LS, Sawyer MB, et al. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol. 2011;22:1413–9.

    Article  PubMed  CAS  Google Scholar 

  80. Park J-W, Finn RS, Kim J-S, et al. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2011;17:1973–83.

    Article  PubMed  CAS  Google Scholar 

  81. Dempke WC, Zippel R. Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor. Anticancer Res. 2010;30:4477–83.

    PubMed  CAS  Google Scholar 

  82. Haruyasu M, Yutaka U, Shimoyama T, et al. Phase I, pharmacokinetic, and biological studies of TSU-68, a novel multiple receptor tyrosine kinase inhibitor, administered after meals with solid tumors. Cancer Chemother Pharmacol. 2011;67:1119–28.

    Article  Google Scholar 

  83. Ueda Y, Shimoyama T, Murakami H, et al. Phase I and pharmacokinetic study of TSU-68, a novel multiple receptor tyrosine kinase inhibitor, by twice daily oral administration between meals in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;67:1101–9.

    Article  PubMed  CAS  Google Scholar 

  84. Kanai F, Yoshida H, Tateishi R, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67:315–24.

    Article  PubMed  CAS  Google Scholar 

  85. Shin SJ, Jung M, Jeung HC, et al. A phase I pharmacokinetic study of TSU-68 (a multiple tyrosine kinase inhibitor of VEGFR-2, FGF and PDFG) in combination with S-1 and oxaliplatin in metastatic colorectal cancer patients previously treated with chemotherapy. Invest New Drugs 2011, Epub ahead of print: doi:10.1007/s10637-011-9683-8.

  86. Dubreuil P, Letard S, Ciufolini M, et al. Masatanib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4:37258. doi:10.1371/journal.pone.0007258.

    Article  Google Scholar 

  87. Gavine P, Mooney L, Kilgour E, et al. Characterization of AZD4547: an orally bioavailable, potent and selective inhibitor of FGFR tyrosine kinases 1, 2 and 3. Presented at the 102nd AACR Annual Meeting. Orlando FLA, USA; April 2–6, 2011.

  88. Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54:7066–83.

    Article  PubMed  CAS  Google Scholar 

  89. Saxty G, Akkari R, Angibaud P, et al. Fragment based drug discovery of selective inhibitors of fibroblast growth factor receptor (FGFR). Presented at the 102nd AACR Annual Meeting. Orlando FLA, USA; April 2–6, 2011.

  90. Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood. 2006;107:4039–46.

    Article  PubMed  CAS  Google Scholar 

  91. Sun HD, Malabunga M, Tonra JR, et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrinol Metab. 2007;292:964–76.

    Article  Google Scholar 

  92. Qing J, Du X, Chen Y, et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest. 2009;119:1216–29.

    Article  PubMed  CAS  Google Scholar 

  93. Yap TA, Sandhu SK, Workman P, de Bono JS. Envisioning the future of early anti-cancer drug development. Nat Rev Cancer. 2010;10:514–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The Drug Development Unit of the Royal Marsden NHS Foundation Trust and ICR is supported in part by a program grant from Cancer Research UK, and by funding from the Experimental Cancer Medicine Centre (to the ICR), and the National Institute for Health Research Biomedical Research Centre (to the Royal Marsden NHS Foundation Trust and the ICR).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rhoda Molife.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniele, G., Corral, J., Molife, L.R. et al. FGF Receptor Inhibitors: Role in Cancer Therapy. Curr Oncol Rep 14, 111–119 (2012). https://doi.org/10.1007/s11912-012-0225-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0225-0

Keywords

Navigation