Skip to main content

Advertisement

Log in

Targeted Therapy in Bone and Soft Tissue Sarcoma in Children and Adolescents

  • Pediatric Oncology (S Epelman, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Pediatric soft-tissue and bone sarcomas are a heterogeneous group of tumors of mesenchymal origin which affect approximately 1,500 children in the United States each year. Using multimodal therapy (surgery, radiation, and chemotherapy), the overall 5-year survival rate for children with soft-tissue and bone sarcomas is approximately 60%–70%. However, the prognosis for children with metastatic or recurrent disease is poor; and, furthermore, the improvements in the overall cure rate have slowed. It is highly unlikely that further advances in the treatment of pediatric soft-tissue and bone sarcomas will come from traditional cytotoxic chemotherapy. Based on research advances in understanding the biology of pediatric soft-tissue and bone sarcomas, improved cure rates will likely be driven by new types of treatment which target the specific abnormalities within these tumors. These new targeted therapies may include small molecules, antibodies, or other immunotherapies. This review briefly describes the biology of the major types of pediatric sarcomas, discusses potential targets for new therapy, and highlights some recent and current clinical trials using targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. PIzzo PA, Poplack DG. Principles and Practice of Pediatric Oncology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. p. 1780.

    Google Scholar 

  2. •• Taylor BS, Barretina J, Maki RG, et al., Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 11(8): p. 541–57. Excellent review article focusing on the molecular changes involved in the formation of sarcomas. The review emphasizes the genomic methods that will likely have a significant impact on the development of future therapeutic strategies.

  3. Ries LAG, Smith MA, Gurney JG, et al. (eds.) Soft Tissue Sarcomas. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Progam. NIH Pub. No. 99-4649. Bethesda, MD, 1999.

  4. Ries LAG, Smith MA, Gurney JG, et al. (eds.) Malignant bone tumors. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Progam. NIH Pub. No. 99-4649. Bethesda, MD, 1999.

  5. Wachtel M and BW Schafer, Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev. 36(4): p. 318–27.

  6. Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer. 2009;115(18):4218–26.

    Article  PubMed  Google Scholar 

  7. Barr FG. Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol. 1997;19(6):483–91.

    Article  PubMed  CAS  Google Scholar 

  8. Barr FG, Nauta LE, Hollows JC. Structural analysis of PAX3 genomic rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet. 1998;102(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  9. Barr FG, Smith LM, Lynch JC, et al. Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: a report from the Children’s Oncology Group. J Mol Diagn. 2006;8(2):202–8.

    Article  PubMed  CAS  Google Scholar 

  10. Barr FG, Qualman SJ, Macris MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62(16):4704–10.

    PubMed  CAS  Google Scholar 

  11. Davicioni E, Anderson MJ, Finckenstein FG, et al. Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol. 2009;174(2):550–64.

    Article  PubMed  CAS  Google Scholar 

  12. Parham DM, Qualman SJ, Teot L, et al. Correlation between histology and PAX/FKHR fusion status in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Am J Surg Pathol. 2007;31(6):895–901.

    Article  PubMed  Google Scholar 

  13. Sorensen PHB, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20(11):2672–9.

    Article  PubMed  CAS  Google Scholar 

  14. Lukasiewicz E, Miekus K, Kijowski J, et al. Inhibition of rhabdomyosarcoma’s metastatic behavior through downregulation of MET receptor signaling. Folia Histochem Cytobiol. 2009;47(3):485–9.

    Article  PubMed  CAS  Google Scholar 

  15. Davis IJ, McFadden AW, Zhang Y, et al. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res. 2010;70(2):639–45.

    Article  PubMed  CAS  Google Scholar 

  16. Gao CF, Zhang YW, Su Y, et al. Therapeutic potential of hepatocyte growth factor/scatter factor neutralizing antibodies: inhibition of tumor growth in both autocrine and paracrine hepatocyte growth factor/scatter factor:c-Met-driven models of leiomyosarcoma. Mol Cancer Ther. 2009;8(10):2803–10.

    Article  PubMed  CAS  Google Scholar 

  17. Yan D, Dong XD, Chen X, et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem. 2009;284(43):29596–604.

    Article  PubMed  CAS  Google Scholar 

  18. Petricoin 3rd EF, Espina V, Araujo RP, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007;67(7):3431–40.

    Article  PubMed  CAS  Google Scholar 

  19. Casanova M and A Ferrari, Pharmacotherapy for pediatric soft-tissue sarcomas. Expert Opin Pharmacother. 12(4): p. 517–31.

  20. Kalebic T, Tsokos M, Helman LJ. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res. 1994;54(21):5531–4.

    PubMed  CAS  Google Scholar 

  21. Kalebic T, Blakesley V, Slade C, et al. Expression of a kinase-deficient IGF-I-R suppresses tumorigenicity of rhabdomyosarcoma cells constitutively expressing a wild type IGF-I-R. Int J Cancer. 1998;76(2):223–7.

    Article  PubMed  CAS  Google Scholar 

  22. Kolb EA, Gorlick R, Houghton PJ, et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(6):1190–7.

    Article  PubMed  Google Scholar 

  23. Scotlandi K, Manara MC, Nicoletti G, et al. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 2005;65(9):3868–76.

    Article  PubMed  CAS  Google Scholar 

  24. Gordon IK, Ye F, Kent MS. Evaluation of the mammalian target of rapamycin pathway and the effect of rapamycin on target expression and cellular proliferation in osteosarcoma cells from dogs. Am J Vet Res. 2008;69(8):1079–84.

    Article  PubMed  CAS  Google Scholar 

  25. Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res. 1999;59(4):886–94.

    PubMed  CAS  Google Scholar 

  26. Houghton PJ, Morton CL, Kolb EA, et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(4):799–805.

    Article  PubMed  Google Scholar 

  27. Wan X, Shen N, Mendoza A, et al. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia. 2006;8(5):394–401.

    Article  PubMed  CAS  Google Scholar 

  28. Wan X, Harkavy B, Shen N, et al. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26(13):1932–40.

    Article  PubMed  CAS  Google Scholar 

  29. Thimmaiah KN, Easton J, Huang S, et al. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3′-kinase-Akt signaling pathways. Cancer Res. 2003;63(2):364–74.

    PubMed  CAS  Google Scholar 

  30. A Phase I Study of IMC-A12 in Combination With Temsirolimus in Pediatric Patients With Recurrent or Refractory Solid Tumors. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01182883.

  31. IMC-A12 in Combination With Temsirolimus (CCI-779) in Patients With Advanced Cancers. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00678769.

  32. Linden O, Greiff L, Wahlberg P, et al. Chemorefractory rhabdomyosarcoma treated with radiotherapy, bevacizumab, statins and surgery and maintenance with bevacizumab and chemotherapy. Onkologie. 2008;31(7):391–3.

    Article  PubMed  CAS  Google Scholar 

  33. Myers AL, Williams RF, Ng CY, et al., Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J Pediatr Surg. 45(6): p. 1080–5.

  34. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    Article  PubMed  CAS  Google Scholar 

  35. Balasubramanian L, Evens AM. Targeting angiogenesis for the treatment of sarcoma. Curr Opin Oncol. 2006;18(4):354–9.

    Article  PubMed  CAS  Google Scholar 

  36. Gee MF, Tsuchida R, Eichler-Jonsson C, et al. Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene. 2005;24(54):8025–37.

    Article  PubMed  CAS  Google Scholar 

  37. Onisto M, Slongo ML, Gregnanin L, et al. Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol. 2005;27(3):791–8.

    PubMed  CAS  Google Scholar 

  38. Temozolomide, Cixutumumab, and Combination Chemotherapy in Treating Patients With Metastatic Rhabdomyosarcoma. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01055314.

  39. Vinorelbine Ditartrate and Cyclophosphamide in Combination With Bevacizumab or Temsirolimus in Treating Patients With Recurrent or Refractory Rhabdomyosarcoma. 2011 [cited September 1, 2011]; Available from: http://clinicaltrials.gov/ct/show/NCT01222715.

  40. de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol. 2000;18(1):204–13.

    PubMed  Google Scholar 

  41. Jedlicka P, Ewing Sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions. Int J Clin Exp Pathol. 3(4): p. 338–47.

  42. Ludwig JA. Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future. Curr Opin Oncol. 2008;20(4):412–8.

    Article  PubMed  Google Scholar 

  43. • Subbiah V and Anderson P, Targeted Therapy of Ewing’s Sarcoma. Sarcoma. 2011: p. 686985. This comprehensive review describes recent and possible future targeted therapies in Ewing’s sarcoma.

  44. Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol. 2000;18(17):3108–14.

    PubMed  CAS  Google Scholar 

  45. Burdach S, Jurgens H. High-dose chemoradiotherapy (HDC) in the Ewing family of tumors (EFT). Crit Rev Oncol Hematol. 2002;41(2):169–89.

    Article  PubMed  CAS  Google Scholar 

  46. Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene. 2001;20(40):5747–54.

    Article  PubMed  CAS  Google Scholar 

  47. Janknecht R. EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene. 2005;363:1–14.

    Article  PubMed  CAS  Google Scholar 

  48. Kovar H. Context matters: the hen or egg problem in Ewing’s sarcoma. Semin Cancer Biol. 2005;15(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  49. Ladanyi M. EWS-FLI1 and Ewing’s sarcoma: recent molecular data and new insights. Cancer Biol Ther. 2002;1(4):330–6.

    PubMed  CAS  Google Scholar 

  50. Riggi N, Stamenkovic I. The Biology of Ewing sarcoma. Cancer Lett. 2007;254(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  51. •• Erkizan HV, Kong Y, Merchant M, et al., A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med, 2009. 15(7): p. 750–6. This manuscript describes the identification of YK-4-279, a small molecule that blocks the binding of RNA helicase A (RHA) to EWS-FLI1 and induces apoptosis in ESFT cells and reduces the growth of ESFT orthotopic xenografts.

  52. Grohar PJ, Woldemichael GM, Griffin LB, et al., Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst. 103(12): p. 962–78.

  53. Olmos D, Martins AS, Jones RL, et al., Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing’s Sarcoma: Reality and Expectations. Sarcoma. 2011: p. 402508.

  54. Toretsky JA, Steinberg SM, Thakar M, et al. Insulin-like growth factor type 1 (IGF-1) and IGF binding protein-3 in patients with Ewing sarcoma family of tumors. Cancer. 2001;92(11):2941–7.

    Article  PubMed  CAS  Google Scholar 

  55. Yee D, Favoni RE, Lebovic GS, et al. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest. 1990;86(6):1806–14.

    Article  PubMed  CAS  Google Scholar 

  56. Strammiello R, Benini S, Manara MC, et al. Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing’s sarcoma cells. Horm Metab Res. 2003;35(11–12):675–84.

    PubMed  CAS  Google Scholar 

  57. Iwasa T, Okamoto I, Suzuki M, et al. Inhibition of insulin-like growth factor 1 receptor by CP-751,871 radiosensitizes non-small cell lung cancer cells. Clin Cancer Res. 2009;15(16):5117–25.

    Article  PubMed  CAS  Google Scholar 

  58. Maris JM, Morton CL, Gorlick R, et al., Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer. 55(1): p. 26–34.

  59. Beauchamp EM, Ringer L, Bulut G, et al., Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest. 121(1): p. 148–60.

  60. MLN8237 in Treating Young Patients With Recurrent or Refractory Solid Tumors or Leukemia. 2011 [cited September 1, 2011]; Available from: http://clinicaltrials.gov/ct2/show/NCT01154816.

  61. Fraumeni Jr JF. Stature and malignant tumors of bone in childhood and adolescence. Cancer. 1967;20(6):967–73.

    Article  PubMed  Google Scholar 

  62. Kager L, Zoubek A, Potschger U, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8.

    Article  PubMed  Google Scholar 

  63. Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin North Am. 1997;44(4):973–89.

    Article  PubMed  CAS  Google Scholar 

  64. Geller DS and Gorlick R, HER-2 targeted treatment of osteosarcoma: the challenges of developing targeted therapy and prognostic factors for rare malignancies. Expert Opin Pharmacother. 11(1): p. 51–61.

  65. Grignani G, Palmerini E, Dileo P, et al., A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol.

  66. Kubo T, Piperdi S, Rosenblum J, et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 2008;112(10):2119–29.

    Article  PubMed  CAS  Google Scholar 

  67. McGary EC, Weber K, Mills L, et al. Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. Clin Cancer Res. 2002;8(11):3584–91.

    PubMed  CAS  Google Scholar 

  68. Sulzbacher I, Traxler M, Mosberger I, et al. Platelet-derived growth factor-AA and -alpha receptor expression suggests an autocrine and/or paracrine loop in osteosarcoma. Mod Pathol. 2000;13(6):632–7.

    Article  PubMed  CAS  Google Scholar 

  69. Manara MC, Nicoletti G, Zambelli D, et al., NVP-BEZ235 as a new therapeutic option for sarcomas. Clin Cancer Res. 16(2): p. 530–40.

  70. Abdeen A, Chou AJ, Healey JH, et al. Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma. Cancer. 2009;115(22):5243–50.

    Article  PubMed  Google Scholar 

  71. Pignochino Y, Grignani G, Cavalloni G, et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer. 2009;8:118.

    Article  PubMed  Google Scholar 

  72. • Bulut G, Hong SH, Chen K, et al., Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene. Jun 27. doi: 10.1038/onc.2011.245. [Epub ahead of print]. High ezrin expression is associated with lung metastasis and poor survival in osteosarcoma. This manuscript describes the identification of small-molecule inhibitors of ezrin which inhibit lung metastases and demonstrate that this novel target may have a future role in preventing tumor metastasis.

  73. Wan X, Kim SY, Guenther LM, et al. Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene. 2009;28(38):3401–11.

    Article  PubMed  CAS  Google Scholar 

  74. Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182–6.

    Article  PubMed  CAS  Google Scholar 

  75. Khanna C, Khan J, Nguyen P, et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61(9):3750–9.

    PubMed  CAS  Google Scholar 

  76. •• Ahmed N, Salsman VS, Yvon E, et al., Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther, 2009. 17(10): p. 1779–87. This manuscript demonstrates that the adoptive transfer of HER2-specific T cells can cause regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models.

    Article  PubMed  CAS  Google Scholar 

  77. Scotlandi K, Manara MC, Hattinger CM, et al. Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing’s sarcoma. Eur J Cancer. 2005;41(9):1349–61.

    Article  PubMed  CAS  Google Scholar 

  78. Sorafenib in Relapsed High Grade Osteosarcoma. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00889057.

  79. A Study of Bevacizumab in Combination With Chemotherapy for Treatment of Osteosarcoma. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00667342.

  80. Her2 Chimeric Antigen Receptor Expressing T Cells in Advanced Sarcoma. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00902044.

  81. Stacchiotti S, Negri T, Zaffaroni N, et al., Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann Oncol. 22(7): p. 1682–90.

  82. Stacchiotti S, Tamborini E, Marrari A, et al. Response to sunitinib malate in advanced alveolar soft part sarcoma. Clin Cancer Res. 2009;15(3):1096–104.

    Article  PubMed  CAS  Google Scholar 

  83. •• Robbins PF, Morgan RA, Feldman SA, et al., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29(7): p. 917–24. This manuscript describes a clinical trial carried out to evaluate the ability of adoptively transferred autologous T cells transduced with a T-cell receptor directed against NY-ESO-1 to mediate tumor regression in patients with metastatic melanoma and synovial cell sarcoma. Objective clinical responses were observed in four of six patients with synovial cell sarcoma.

  84. A Pilot Study of Genetically Engineered NY-ESO-1 Specific (c259) T Cells in HLA-A2+ Patients With Synovial Sarcoma. 2011 [cited September 1, 2011]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01343043.

  85. Sunitinib or Cediranib for Alveolar Soft Part Sarcoma. 2011 [cited September 1, 2011.]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT01391962.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, P.A., Chintagumpala, M. Targeted Therapy in Bone and Soft Tissue Sarcoma in Children and Adolescents. Curr Oncol Rep 14, 197–205 (2012). https://doi.org/10.1007/s11912-012-0223-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0223-2

Keywords

Navigation