Skip to main content

Advertisement

Log in

The Evolving Role of Diffusion Magnetic Resonance Imaging in Movement Disorders

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Significant advances have allowed diffusion magnetic resonance imaging (MRI) to evolve into a powerful tool in the field of movement disorders that can be used to study disease states and connectivity between brain regions. Diffusion MRI is a promising potential biomarker for Parkinson’s disease and other forms of parkinsonism, and may allow the distinction of different forms of parkinsonism. Techniques such as tractography have contributed to our current thinking regarding the pathophysiology of dystonia and possible mechanisms of penetrance. Diffusion MRI measures could potentially assist in monitoring disease progression in Huntington’s disease, and in uncovering the nature of the processes and structures involved the development of essential tremor. The ability to represent structural connectivity in vivo also makes diffusion MRI an ideal adjunctive tool for the surgical treatment of movement disorders. We review recent studies using diffusion MRI in movement disorders research and present the current state of the science as well as future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Scherfler C, Schocke MF, Seppi K, Esterhammer R, Brenneis C, Jaschke W, et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson's disease. Brain. 2006;129(2):538–42. doi:10.1093/brain/awh674.

    PubMed  Google Scholar 

  2. Stoessl AJ, Brooks DJ, Eidelberg D. Milestones in neuroimaging. Mov Disord. 2011;26(6):868–978. doi:10.1002/mds.23679.

    PubMed  Google Scholar 

  3. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39. doi:10.1016/j.neuron.2006.08.012.

    PubMed  CAS  Google Scholar 

  4. •• Prodoehl J, Li H, Planetta PJ, Goetz CG, Shannon KM, Tangonan R, et al. Diffusion tensor imaging of Parkinson’s disease, atypical Parkinsonism, and essential tremor. Mov Disord. 2013. doi:10.1002/mds.25491. This study used a multitargeted approach using basal ganglia and cerebellar ROI to study the discriminative capability of diffusion MRI in patients with PD, MSA-P, PSP, and ET and healthy controls. Excellent differentiation was achieved between the differentiation of diseases from each other and from controls, and the pattern of diffusion MRI targets and measures was unique for each disease.

    PubMed  Google Scholar 

  5. Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N. DTI correlates of distinct cognitive impairments in Parkinson's disease. Hum Brain Mapp. 2013. doi:10.1002/hbm.22256.

    PubMed  Google Scholar 

  6. Saini J, Bagepally BS, Bhatt MD, Chandran V, Bharath RD, Prasad C, et al. Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord. 2012;18(5):477–82. doi:10.1016/j.parkreldis.2012.01.006.

    PubMed  Google Scholar 

  7. Argyelan M, Carbon M, Niethammer M, Ulug AM, Voss HU, Bressman SB, et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7. doi:10.1523/JNEUROSCI.2300-09.2009.

    PubMed  CAS  Google Scholar 

  8. Wang HC, Hsu JL, Leemans A. Diffusion tensor imaging of vascular parkinsonism: structural changes in cerebral white matter and the association with clinical severity. Arch Neurol. 2012;69(10):1340–8. doi:10.1001/archneurol.2012.633.

    PubMed  Google Scholar 

  9. Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease. Eur J Radiol. 2011;77(2):269–73. doi:10.1016/j.ejrad.2009.07.032.

    PubMed  Google Scholar 

  10. Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage. 2013;73:239–54. doi:10.1016/j.neuroimage.2012.06.081.

    PubMed  Google Scholar 

  11. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker's guide to diffusion tensor imaging. Front Neurosci. 2013;7:31. doi:10.3389/fnins.2013.00031.

    PubMed  Google Scholar 

  12. Blood AJ, Kuster JK, Woodman SC, Kirlic N, Makhlouf ML, Multhaupt-Buell TJ, et al. Evidence for altered basal ganglia-brainstem connections in cervical dystonia. PloS One. 2012;7(2):e31654. doi:10.1371/journal.pone.0031654.

    PubMed  CAS  Google Scholar 

  13. Zhan W, Kang GA, Glass GA, Zhang Y, Shirley C, Millin R, et al. Regional alterations of brain microstructure in Parkinson's disease using diffusion tensor imaging. Mov Disord. 2012;27(1):90–7. doi:10.1002/mds.23917.

    PubMed  Google Scholar 

  14. Prakash BD, Sitoh YY, Tan LC, Au WL. Asymmetrical diffusion tensor imaging indices of the rostral substantia nigra in Parkinson's disease. Parkinsonism Relat Disord. 2012;18(9):1029–33. doi:10.1016/j.parkreldis.2012.05.021.

    PubMed  Google Scholar 

  15. Planetta PJ, Schulze ET, Geary EK, Corcos DM, Goldman JG, Little DM, et al. Thalamic projection fiber integrity in de novo Parkinson disease. AJNR Am J Neuroradiol. 2013;34(1):74–9. doi:10.3174/ajnr.A3178.

    PubMed  CAS  Google Scholar 

  16. Agosta F, Kostic VS, Davidovic K, Kresojevic N, Sarro L, Svetel M, et al. White matter abnormalities in Parkinson's disease patients with glucocerebrosidase gene mutations. Mov Disord. 2013;28(6):772–8. doi:10.1002/mds.25397.

    PubMed  CAS  Google Scholar 

  17. Du G, Lewis MM, Sen S, Wang J, Shaffer ML, Styner M, et al. Imaging nigral pathology and clinical progression in Parkinson's disease. Mov Disord. 2012;27(13):1636–43. doi:10.1002/mds.25182.

    PubMed  Google Scholar 

  18. Sharman M, Valabregue R, Perlbarg V, Marrakchi-Kacem L, Vidailhet M, Benali H, et al. Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity. Mov Disord. 2013;28(4):447–54. doi:10.1002/mds.25255.

    PubMed  CAS  Google Scholar 

  19. Carlesimo GA, Piras F, Assogna F, Pontieri FE, Caltagirone C, Spalletta G. Hippocampal abnormalities and memory deficits in Parkinson disease: a multimodal imaging study. Neurology. 2012;78(24):1939–45. doi:10.1212/WNL.0b013e318259e1c5.

    PubMed  CAS  Google Scholar 

  20. Rae CL, Correia MM, Altena E, Hughes LE, Barker RA, Rowe JB. White matter pathology in Parkinson's disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage. 2012;62(3):1675–84. doi:10.1016/j.neuroimage.2012.06.012.

    PubMed  Google Scholar 

  21. Deng B, Zhang Y, Wang L, Peng K, Han L, Nie K, et al. Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson's disease. Am J Alzheimers Dis Other Demen. 2013;28(2):154–64. doi:10.1177/1533317512470207.

    PubMed  Google Scholar 

  22. Surdhar I, Gee M, Bouchard T, Coupland N, Malykhin N, Camicioli R. Intact limbic-prefrontal connections and reduced amygdala volumes in Parkinson's disease with mild depressive symptoms. Parkinsonism Relat Disord. 2012;18(7):809–13. doi:10.1016/j.parkreldis.2012.03.008.

    PubMed  Google Scholar 

  23. Gallagher C, Bell B, Bendlin B, Palotti M, Okonkwo O, Sodhi A, et al. White matter microstructural integrity and executive function in Parkinson's disease. J Int Neuropsychol Soc. 2013;19(3):349–54. doi:10.1017/S1355617712001373.

    PubMed  Google Scholar 

  24. Kamagata K, Motoi Y, Tomiyama H, Abe O, Ito K, Shimoji K, et al. Relationship between cognitive impairment and white-matter alteration in Parkinson's disease with dementia: tract-based spatial statistics and tract-specific analysis. Eur Radiol. 2013. doi:10.1007/s00330-013-2775-4.

    PubMed  Google Scholar 

  25. Ford AH, Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Burn DJ, et al. Rapid eye movement sleep behavior disorder in Parkinson's disease: Magnetic resonance imaging study. Mov Disord Off J Mov Disord Soc. 2013;23(7):1946–55. doi:10.1002/mds.25367.

    Google Scholar 

  26. Tsukamoto K, Matsusue E, Kanasaki Y, Kakite S, Fujii S, Kaminou T, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson's disease: evaluation by 3.0-T MR imaging. Neuroradiology. 2012;54(9):947–55.

    PubMed  Google Scholar 

  27. Agosta F, Pievani M, Svetel M, Jecmenica Lukic M, Copetti M, Tomic A, et al. Diffusion tensor MRI contributes to differentiate Richardson's syndrome from PSP-parkinsonism. Neurobiol Aging. 2012;33(12):2817–26. doi:10.1016/j.neurobiolaging.2012.02.002.

    PubMed  Google Scholar 

  28. Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR. Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol. 2012;33(11):2123–8. doi:10.3174/ajnr.A3126.

    PubMed  CAS  Google Scholar 

  29. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd Nor H. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging. Eur Radiol. 2013. doi:10.1007/s00330-012-2759-9.

    PubMed  Google Scholar 

  30. Whitwell JL, Xu J, Mandrekar J, Gunter JL, Jack Jr CR, Josephs KA. Imaging measures predict progression in progressive supranuclear palsy. Mov Disord. 2012;27(14):1801–4. doi:10.1002/mds.24970.

    PubMed  Google Scholar 

  31. Saini J, Bagepally BS, Sandhya M, Pasha SA, Yadav R, Pal PK. In vivo evaluation of white matter pathology in patients of progressive supranuclear palsy using TBSS. Neuroradiology. 2012;54(7):771–80. doi:10.1007/s00234-011-0983-7.

    PubMed  Google Scholar 

  32. Lu CF, Soong BW, Wu HM, Teng S, Wang PS, Wu YT. Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord. 2013;28(3):362–9. doi:10.1002/mds.25314.

    PubMed  Google Scholar 

  33. •• Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in Parkinsonian syndromes: a systematic review and meta-analysis. Neurology. 2013;80(9):857–64. doi:10.1212/WNL.0b013e318284070c. This systematic review and meta-analysis describes many of the important diffusion MRI studies that predated those described in Table 1 and describes a significant effect size for decreased FA in the SN in PD patients compared with controls.

    PubMed  Google Scholar 

  34. Sherer TB. Biomarkers for Parkinson's disease. Sci Transl Med. 2011;3(79):79ps14. doi:10.1126/scitranslmed.3002488.

    PubMed  Google Scholar 

  35. Menke RA, Scholz J, Miller KL, Deoni S, Jbabdi S, Matthews PM, et al. MRI characteristics of the substantia nigra in Parkinson's disease: a combined quantitative T1 and DTI study. Neuroimage. 2009;47(2):435–41. doi:10.1016/j.neuroimage.2009.05.017.

    PubMed  Google Scholar 

  36. Menke RA, Jbabdi S, Miller KL, Matthews PM, Zarei M. Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease. Neuroimage. 2010;52(4):1175–80. doi:10.1016/j.neuroimage.2010.05.086.

    PubMed  Google Scholar 

  37. Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72(16):1378–84. doi:10.1212/01.wnl.0000340982.01727.6e.

    PubMed  CAS  Google Scholar 

  38. Vaillancourt DE, Spraker MB, Prodoehl J, Zhou XJ, Little DM. Effects of aging on the ventral and dorsal substantia nigra using diffusion tensor imaging. Neurobiol Aging. 2012;33(1):35–42. doi:10.1016/j.neurobiolaging.2010.02.006.

    PubMed  Google Scholar 

  39. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, et al. Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson's disease. Neurobiol Dis. 2007;26(3):590–6. doi:10.1016/j.nbd.2007.02.010.

    PubMed  CAS  Google Scholar 

  40. Skorpil M, Soderlund V, Sundin A, Svenningsson P. MRI diffusion in Parkinson’s disease: using the technique’s inherent directional information to study the olfactory bulb and substantia nigra. J Park Dis. 2012;2(2):171–80. doi:10.3233/JPD-2012-12091.

    Google Scholar 

  41. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70(16 Pt 2):1411–7. doi:10.1212/01.wnl.0000286384.31050.b5.

    PubMed  CAS  Google Scholar 

  42. •• Du G, Lewis MM, Styner M, Shaffer ML, Sen S, Yang QX, et al. Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease. Mov Disord. 2011;26(9):1627–32. doi:10.1002/mds.23643. This study combined diffusion MRI with R2* imaging and showed abnormalities in both measures in the SN, with combined measures showing the greatest sensitivity and specificity in distinguishing patients from controls. Further, the two measures were not correlated, suggesting they might represent different pathological processes in PD.

    PubMed  Google Scholar 

  43. Fahn S, Jankovic J, Hallett M. Principles and practice of movement disorders. 2nd ed. Edinburgh: Saunders; 2011.

    Google Scholar 

  44. Horovitz SG, Ford A, Najee-Ullah MA, Ostuni JL, Hallett M. Anatomical correlates of blepharospasm. Transl Neurodegener. 2012;1(1):12. doi:10.1186/2047-9158-1-12.

    PubMed  Google Scholar 

  45. van der Meer JN, Beukers RJ, van der Salm SM, Caan MW, Tijssen MA, Nederveen AJ. White matter abnormalities in gene-positive myoclonus-dystonia. Mov Disord. 2012;27(13):1666–72. doi:10.1002/mds.25128.

    PubMed  Google Scholar 

  46. Cheng FB, Wan XH, Feng JC, Ma LY, Hou B, Feng F, et al. Subcellular distribution of THAP1 and alterations in the microstructure of brain white matter in DYT6 dystonia. Parkinsonism Relat Disord. 2012;18(8):978–82. doi:10.1016/j.parkreldis.2012.05.008.

    PubMed  Google Scholar 

  47. Delmaire C, Dumas EM, Sharman MA, van den Bogaard SJ, Valabregue R, Jauffret C, et al. The structural correlates of functional deficits in early Huntington's disease. Hum Brain Mapp. 2012;34(9):2141–53. doi:10.1002/hbm.22055.

    PubMed  Google Scholar 

  48. Di Paola M, Luders E, Cherubini A, Sanchez-Castaneda C, Thompson PM, Toga AW, et al. Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington's disease. Cereb Cortex. 2012;22(12):2858–66. doi:10.1093/cercor/bhr360.

    PubMed  Google Scholar 

  49. Van Camp N, Blockx I, Camon L, de Vera N, Verhoye M, Veraart J, et al. A complementary diffusion tensor imaging (DTI)-histological study in a model of Huntington's disease. Neurobiol Aging. 2012;33(5):945–59. doi:10.1016/j.neurobiolaging.2010.07.001.

    PubMed  Google Scholar 

  50. Dumas EM, van den Bogaard SJ, Ruber ME, Reilman RR, Stout JC, Craufurd D, et al. Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington's disease. Hum Brain Mapp. 2012;33(1):203–12. doi:10.1002/hbm.21205.

    PubMed  Google Scholar 

  51. Georgiou-Karistianis N, Gray MA, Dominguez DJ, Dymowski AR, Bohanna I, Johnston LA, et al. Automated differentiation of pre-diagnosis Huntington's disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: the IMAGE-HD study. Neurobiol Dis. 2013;51:82–92. doi:10.1016/j.nbd.2012.10.001.

    PubMed  CAS  Google Scholar 

  52. Matsui JT, Vaidya JG, Johnson HJ, Magnotta VA, Long JD, Mills JA, et al. Diffusion weighted imaging of prefrontal cortex in prodromal Huntington's disease. Hum Brain Mapp. 2013. doi:10.1002/hbm.22273.

    PubMed  Google Scholar 

  53. Marrakchi-Kacem L, Delmaire C, Guevara P, Poupon F, Lecomte S, Tucholka A, et al. Mapping cortico-striatal connectivity onto the cortical surface: a new tractography-based approach to study Huntington disease. PloS One. 2013;8(2):e53135. doi:10.1371/journal.pone.0053135.

    PubMed  CAS  Google Scholar 

  54. Buijink AW, Caan MW, Tijssen MA, Hoogduin JM, Maurits NM, van Rootselaar AF. Decreased cerebellar fiber density in cortical myoclonic tremor but not in essential tremor. Cerebellum. 2013;12(2):199–204. doi:10.1007/s12311-012-0414-2.

    PubMed  Google Scholar 

  55. • Neychev VK, Gross RE, Lehericy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol Dis. 2011;42(2):185–201. doi:10.1016/j.nbd.2011.01.026. This review describes current thinking regarding the neuroanatomic substrates of dystonia, and provides as a critical appraisal of the evidence from pathology, imaging (including diffusion MRI), and physiologic studies.

    PubMed  Google Scholar 

  56. • Zoons E, Booij J, Nederveen AJ, Dijk JM, Tijssen MA. Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. Neuroimage. 2011;56(3):1011–20. doi:10.1016/j.neuroimage.2011.02.045. This extensive review focuses on the role of neuroimaging specifically in focal dystonia, and includes descriptions of many of the important studies published prior to those listed in Table 2.

    PubMed  CAS  Google Scholar 

  57. Niethammer M, Carbon M, Argyelan M, Eidelberg D. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9. doi:10.1016/j.nbd.2010.10.010.

    PubMed  Google Scholar 

  58. Carbon M, Kingsley PB, Su S, Smith GS, Spetsieris P, Bressman S, et al. Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann Neurol. 2004;56(2):283–6. doi:10.1002/ana.20177.

    PubMed  CAS  Google Scholar 

  59. Carbon M, Kingsley PB, Tang C, Bressman S, Eidelberg D. Microstructural white matter changes in primary torsion dystonia. Mov Disord. 2008;23(2):234–9. doi:10.1002/mds.21806.

    PubMed  Google Scholar 

  60. • Ulug AM, Vo A, Argyelan M, Tanabe L, Schiffer WK, Dewey S, et al. Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc Natl Acad Sci U S A. 2011;108(16):6638–43. doi:10.1073/pnas.1016445108. This animal model of dystonia study is important because it demonstrated cerebellothalamic diffusion MRI changes in mutants compared with controls that correlated with measures of cortical metabolic activity, somewhat similar to the findings of Argyelan et al. [27].

    PubMed  CAS  Google Scholar 

  61. Colosimo C, Pantano P, Calistri V, Totaro P, Fabbrini G, Berardelli A. Diffusion tensor imaging in primary cervical dystonia. J Neurol Neurosurg Psychiatry. 2005;76(11):1591–3. doi:10.1136/jnnp.2004.056614.

    PubMed  CAS  Google Scholar 

  62. Fabbrini G, Pantano P, Totaro P, Calistri V, Colosimo C, Carmellini M, et al. Diffusion tensor imaging in patients with primary cervical dystonia and in patients with blepharospasm. Eur J Neurol. 2008;15(2):185–9. doi:10.1111/j.1468-1331.2007.02034.x.

    PubMed  CAS  Google Scholar 

  63. Bonilha L, de Vries PM, Vincent DJ, Rorden C, Morgan PS, Hurd MW, et al. Structural white matter abnormalities in patients with idiopathic dystonia. Mov Disord. 2007;22(8):1110–6. doi:10.1002/mds.21295.

    PubMed  Google Scholar 

  64. Bonilha L, de Vries PM, Hurd MW, Rorden C, Morgan PS, Besenski N, et al. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia. Parkinsonism Relat Disord. 2009;15(1):64–7. doi:10.1016/j.parkreldis.2008.01.018.

    PubMed  Google Scholar 

  65. Delmaire C, Vidailhet M, Wassermann D, Descoteaux M, Valabregue R, Bourdain F, et al. Diffusion abnormalities in the primary sensorimotor pathways in writer's cramp. Arch Neurol. 2009;66(4):502–8. doi:10.1001/archneurol.2009.8.

    PubMed  Google Scholar 

  66. Simonyan K, Tovar-Moll F, Ostuni J, Hallett M, Kalasinsky VF, Lewin-Smith MR, et al. Focal white matter changes in spasmodic dysphonia: a combined diffusion tensor imaging and neuropathological study. Brain. 2008;131(2):447–59. doi:10.1093/brain/awm303.

    PubMed  Google Scholar 

  67. Blood AJ. New hypotheses about postural control support the notion that all dystonias are manifestations of excessive brain postural function. Biosci Hypotheses. 2008;1(1):14–25. doi:10.1016/j.bihy.2008.01.006.

    PubMed  Google Scholar 

  68. Blood AJ, Tuch DS, Makris N, Makhlouf ML, Sudarsky LR, Sharma N. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport. 2006;17(12):1251–5. doi:10.1097/01.wnr.0000230500.03330.01.

    PubMed  CAS  Google Scholar 

  69. Georgiou-Karistianis N, Scahill R, Tabrizi SJ, Squitieri F, Aylward E. Structural MRI in Huntington's disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev. 2013;37(3):480–90. doi:10.1016/j.neubiorev.2013.01.022.

    PubMed  Google Scholar 

  70. Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, et al. Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry. 2008;79(8):874–80. doi:10.1136/jnnp.2007.128728.

    PubMed  CAS  Google Scholar 

  71. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.1016/S1474-4422(11)70263-0.

    PubMed  Google Scholar 

  72. Kloppel S, Henley SM, Hobbs NZ, Wolf RC, Kassubek J, Tabrizi SJ, et al. Magnetic resonance imaging of Huntington's disease: preparing for clinical trials. Neuroscience. 2009;164(1):205–19. doi:10.1016/j.neuroscience.2009.01.045.

    PubMed  CAS  Google Scholar 

  73. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology. 2003;60(10):1615–20.

    PubMed  CAS  Google Scholar 

  74. Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology. 2004;232(3):867–73. doi:10.1148/radiol.2322030820.

    PubMed  Google Scholar 

  75. Reading SA, Yassa MA, Bakker A, Dziorny AC, Gourley LM, Yallapragada V, et al. Regional white matter change in pre-symptomatic Huntington's disease: a diffusion tensor imaging study. Psychiatry Res. 2005;140(1):55–62. doi:10.1016/j.pscychresns.2005.05.011.

    PubMed  Google Scholar 

  76. Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM, et al. Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures. Mov Disord. 2006;21(9):1317–25. doi:10.1002/mds.20979.

    PubMed  Google Scholar 

  77. Seppi K, Schocke MF, Mair KJ, Esterhammer R, Weirich-Schwaiger H, Utermann B, et al. Diffusion-weighted imaging in Huntington's disease. Mov Disord. 2006;21(7):1043–7. doi:10.1002/mds.20868.

    PubMed  Google Scholar 

  78. Magnotta VA, Kim J, Koscik T, Beglinger LJ, Espinso D, Langbehn D, et al. Diffusion tensor imaging in preclinical Huntington's disease. Brain Imaging Behav. 2009;3(1):77–84. doi:10.1007/s11682-008-9051-2.

    PubMed  Google Scholar 

  79. Stoffers D, Sheldon S, Kuperman JM, Goldstein J, Corey-Bloom J, Aron AR. Contrasting gray and white matter changes in preclinical Huntington disease: an MRI study. Neurology. 2010;74(15):1208–16. doi:10.1212/WNL.0b013e3181d8c20a.

    PubMed  CAS  Google Scholar 

  80. Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical "disconnection". Neuroimage. 2010;49(4):2995–3004. doi:10.1016/j.neuroimage.2009.10.015.

    PubMed  Google Scholar 

  81. Muller HP, Glauche V, Novak MJ, Nguyen-Thanh T, Unrath A, Lahiri N, et al. Stability of white matter changes related to Huntington's disease in the presence of imaging noise: a DTI study. PLoS Curr. 2011;3, RRN1232. doi:10.1371/currents.RRN1232.

    PubMed  Google Scholar 

  82. Bohanna I, Georgiou-Karistianis N, Sritharan A, Asadi H, Johnston L, Churchyard A, et al. Diffusion tensor imaging in Huntington's disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging Behav. 2011;5(3):171–80. doi:10.1007/s11682-011-9121-8.

    PubMed  Google Scholar 

  83. • Esmaeilzadeh M, Ciarmiello A, Squitieri F. Seeking brain biomarkers for preventive therapy in Huntington disease. CNS Neurosci Ther. 2011;17(5):368–86. doi:10.1111/j.1755-5949.2010.00157.x. This review highlights the neuroimaging literature (including diffusion MRI) and details the findings of previous studies aimed at developing imaging-based potential biomarkers for HD, and includes an interesting figure highlighting potential biomarkers according to each period of disease progression.

    PubMed  CAS  Google Scholar 

  84. Weaver KE, Richards TL, Liang O, Laurino MY, Samii A, Aylward EH. Longitudinal diffusion tensor imaging in Huntington's disease. Exp Neurol. 2009;216(2):525–9. doi:10.1016/j.expneurol.2008.12.026.

    PubMed  Google Scholar 

  85. Sritharan A, Egan GF, Johnston L, Horne M, Bradshaw JL, Bohanna I, et al. A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease. J Neurol Neurosurg Psychiatry. 2010;81(3):257–62. doi:10.1136/jnnp.2007.142786.

    PubMed  Google Scholar 

  86. Della Nave R, Ginestroni A, Tessa C, Giannelli M, Piacentini S, Filippi M, et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol. 2010;31(9):1675–81. doi:10.3174/ajnr.A2128.

    PubMed  CAS  Google Scholar 

  87. Kloppel S, Draganski B, Golding CV, Chu C, Nagy Z, Cook PA, et al. White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington's disease. Brain. 2008;131(1):196–204. doi:10.1093/brain/awm275.

    PubMed  Google Scholar 

  88. Tan L, Yu JT, Tan L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci. 2012;323(1–2):1–8. doi:10.1016/j.jns.2012.08.005.

    PubMed  CAS  Google Scholar 

  89. Blockx I, Van Camp N, Verhoye M, Boisgard R, Dubois A, Jego B, et al. Genotype specific age related changes in a transgenic rat model of Huntington's disease. Neuroimage. 2011;58(4):1006–16. doi:10.1016/j.neuroimage.2011.07.007.

    PubMed  Google Scholar 

  90. Rizk-Jackson A, Stoffers D, Sheldon S, Kuperman J, Dale A, Goldstein J, et al. Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques. Neuroimage. 2011;56(2):788–96. doi:10.1016/j.neuroimage.2010.04.273.

    PubMed  Google Scholar 

  91. Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington's disease. Brain Res Rev. 2008;58(1):209–25. doi:10.1016/j.brainresrev.2008.04.001.

    PubMed  CAS  Google Scholar 

  92. Ross CA, Tabrizi SJ. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98. doi:10.1016/S1474-4422(10)70245-3.

    PubMed  CAS  Google Scholar 

  93. Martinelli P, Rizzo G, Manners D, Tonon C, Pizza F, Testa C, et al. Diffusion-weighted imaging study of patients with essential tremor. Mov Disord. 2007;22(8):1182–5. doi:10.1002/mds.21287.

    PubMed  Google Scholar 

  94. Shin DH, Han BS, Kim HS, Lee PH. Diffusion tensor imaging in patients with essential tremor. AJNR Am J Neuroradiol. 2008;29(1):151–3. doi:10.3174/ajnr.A0744.

    PubMed  CAS  Google Scholar 

  95. Nicoletti G, Manners D, Novellino F, Condino F, Malucelli E, Barbiroli B, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology. 2010;74(12):988–94. doi:10.1212/WNL.0b013e3181d5a460.

    PubMed  CAS  Google Scholar 

  96. Jia L, Jia-Lin S, Qin D, Qing L, Yan Z. A diffusion tensor imaging study in essential tremor. J Neuroimaging. 2011;21(4):370–4. doi:10.1111/j.1552-6569.2010.00535.x.

    PubMed  Google Scholar 

  97. Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, et al. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp. 2011;32(6):896–904. doi:10.1002/hbm.21077.

    PubMed  Google Scholar 

  98. Elble RJ. What is essential tremor? Curr Neurol Neurosci Rep. 2013;13(6):353. doi:10.1007/s11910-013-0353-4.

    PubMed  Google Scholar 

  99. Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A, et al. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS One. 2012;7(6):e39061. doi:10.1371/journal.pone.0039061.

    PubMed  CAS  Google Scholar 

  100. Sedrak M, Gorgulho A, Frew A, Behnke E, DeSalles A, Pouratian N. Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus. Neurosurgery. 2011;69(5):1124–9. doi:10.1227/NEU.0b013e3182296a42. discussion 1129-30.

    PubMed  Google Scholar 

  101. Kincses ZT, Szabo N, Valalik I, Kopniczky Z, Dezsi L, Klivenyi P, et al. Target identification for stereotactic thalamotomy using diffusion tractography. PloS One. 2012;7(1):e29969. doi:10.1371/journal.pone.0029969.

    PubMed  CAS  Google Scholar 

  102. Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, Desalles AA. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115(5):995–1004. doi:10.3171/2011.7.JNS11250.

    PubMed  Google Scholar 

  103. Elias WJ, Zheng ZA, Domer P, Quigg M, Pouratian N. Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus. Neuroimage. 2012;59(3):2025–34. doi:10.1016/j.neuroimage.2011.10.049.

    PubMed  Google Scholar 

  104. Sudhyadhom A, McGregor K, Okun MS, Foote KD, Trinastic J, Crosson B, et al. Delineation of motor and somatosensory thalamic subregions utilizing probabilistic diffusion tractography and electrophysiology. J Magn Reson Imaging. 2013;37(3):600–9. doi:10.1002/jmri.23861.

    PubMed  Google Scholar 

  105. Henderson JM. "Connectomic surgery": diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15. doi:10.3389/fnint.2012.00015.

    PubMed  Google Scholar 

  106. • Klein JC, Barbe MT, Seifried C, Baudrexel S, Runge M, Maarouf M, et al. The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology. 2012;78(11):787–95. doi:10.1212/WNL.0b013e318249f702. This study used probabilistic tractography to demonstrate structural connectivity between effective thalamic stimulation sites and areas of the brain known to be part of a tremor-generating network. This network was consistent across patients and was consistent with prior functional imaging studies and animal models.

    PubMed  CAS  Google Scholar 

  107. Weir DW, Sturrock A, Leavitt BR. Development of biomarkers for Huntington's disease. Lancet Neurol. 2011;10(6):573–90. doi:10.1016/S1474-4422(11)70070-9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Christopher W. Hess has received fellowship funding from the Parkinson’s Disease Foundation. Michael S. Okun has received research grants from the National Institutes of Health, the National Parkinson Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, the Smallwood Foundation, the Bachmann-Strauss Dystonia & Parkinson Foundation, the Tourette Syndrome Association, the Dystonia Medical Research Foundation, and the University of Florida Foundation. David E. Vaillancourt has received grant support from the National Institutes of Health, the Michael J. Fox Foundation, the Bachmann-Strauss Dystonia & Parkinson Foundation, and Tyler’s Hope for a Dystonia Cure.

Compliance with Ethics Guidelines

Conflict of Interest

Christopher W. Hess, Edward Ofori, and Umer Akbar declare that they have no conflict of interest.

Michael S. Okun serves as a consultant for the National Parkinson Foundation. He has received royalties for publications with Demos, Manson, Amazon, and Cambridge University Press (movement disorders books). He has participated in continuing medical education activities on movement disorders sponsored by the University of South Florida’s continuing medical education office, PeerView, and Vanderbilt University. The institution and not Michael Okun receives grants from Medtronic and ANS/St. Jude, and Michael Okun has no financial interest in these grants. He has participated as a site principal investigator and/or co-investigator for several National Institutes of Health, foundation, and industry sponsored trials over the years, but has not received honoraria.

David E. Vaillancourt consults for projects at the University of Texas Southwestern Medical Center, the University of Illinois, and Great Lakes NeuroTechnologies.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Vaillancourt.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, C.W., Ofori, E., Akbar, U. et al. The Evolving Role of Diffusion Magnetic Resonance Imaging in Movement Disorders. Curr Neurol Neurosci Rep 13, 400 (2013). https://doi.org/10.1007/s11910-013-0400-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0400-1

Keywords

Navigation