Skip to main content

Advertisement

Log in

Lactobacillus iners and Genital Health: Molecular Clues to an Enigmatic Vaginal Species

  • Female Genital Tract Infections (JD Sobel, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health.

Recent Findings

L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species.

Summary

The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Petrova MI, Reid G, Vaneechoutte M, et al. Lactobacillus iners: friend or foe? Trends Microbiol. 2017;25(3):182–91. https://doi.org/10.1016/j.tim.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  2. Vaneechoutte M. Lactobacillus iners, the unusual suspect. Res Microbiol. 2017;168(9–10):826–36. https://doi.org/10.1016/j.resmic.2017.09.003.

    Article  PubMed  Google Scholar 

  3. Zheng N, Guo R, Wang J, et al. Contribution of Lactobacillus iners to vaginal health and diseases: a systematic review. Front Cell Infect Microbiol. 2021;11(792787. https://doi.org/10.3389/fcimb.2021.792787

  4. Carter KA, Fischer MD, Petrova MI, et al. Epidemiologic evidence on the role of Lactobacillus iners in sexually transmitted infections and bacterial vaginosis: a series of systematic reviews and meta-analyses. Sexually Transmitted Diseases. https://doi.org/10.1097/olq.0000000000001744

  5. Cohen CR, Lingappa JR, Baeten JM, et al. Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples. PLoS Med. 2012;9(6):e1001251. https://doi.org/10.1371/journal.pmed.1001251

  6. Brotman RM, Klebanoff MA, Nansel TR, et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J Infect Dis. 2010;202(12):1907–15. https://doi.org/10.1086/657320.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martin DH. The microbiota of the vagina and its influence on women’s health and disease. Am J Med Sci. 2012;343(1):2–9. https://doi.org/10.1097/MAJ.0b013e31823ea228.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peipert JF, Lapane KL, Allsworth JE, et al. Bacterial vaginosis, race, and sexually transmitted infections: does race modify the association? Sex Transm Dis. 2008;35(4):363–7. https://doi.org/10.1097/OLQ.0b013e31815e4179.

    Article  PubMed  Google Scholar 

  9. Cherpes TL, Meyn LA, Krohn MA, et al. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis. 2003;37(3):319–25. https://doi.org/10.1086/375819.

    Article  PubMed  Google Scholar 

  10. Martin H, Richardson B, Nyange P, et al. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J Infect Dis. 1999;180(1863 - 1868. [Online]. Available: http://jid.oxfordjournals.org/content/180/6/1863.full.pdf

  11. King CC, Jamieson DJ, Wiener J, et al. Bacterial vaginosis and the natural history of human papillomavirus. Infect Dis Obstet Gynecol. 2011;2011(319460. https://doi.org/10.1155/2011/319460

  12. Myer L, Denny L, Telerant R, et al. Bacterial vaginosis and susceptibility to HIV infection in South African women: a nested case-control study. J Infect Dis. 2005;192(8):1372–80. https://doi.org/10.1086/462427.

    Article  PubMed  Google Scholar 

  13. Gallo MF, Macaluso M, Warner L, et al. Bacterial vaginosis, gonorrhea, and chlamydial infection among women attending a sexually transmitted disease clinic: a longitudinal analysis of possible causal links. Ann Epidemiol. 2012;22(3):213–20. https://doi.org/10.1016/j.annepidem.2011.11.005.

    Article  PubMed  Google Scholar 

  14. Balkus JE, Richardson BA, Rabe LK, et al. Bacterial vaginosis and the risk of Trichomonas vaginalis acquisition among HIV-1–negative women. Sex Transm Dis. 2014;41(2):123–128. https://doi.org/10.1097/OLQ.0000000000000075

  15. Cherpes TL, Meyn LA, Krohn MA, et al. Risk factors for infection with herpes simplex virus type 2: role of smoking, douching, uncircumcised males, and vaginal flora. Sex Transm Dis. 2003;30(5):405–10. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/12916131

  16. Ghartey JP, Smith BC, Chen Z, et al. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli. PLoS One. 2014;9(5):e96659. https://doi.org/10.1371/journal.pone.0096659

  17. Phukan N, Parsamand T, Brooks AE, et al. The adherence of Trichomonas vaginalis to host ectocervical cells is influenced by lactobacilli. Sex Transm Infect. 2013;89(6):455–9. https://doi.org/10.1136/sextrans-2013-051039.

    Article  PubMed  Google Scholar 

  18. Winberg J, Herthelius-Elman M, Mollby R, et al. Pathogenesis of urinary tract infection--experimental studies of vaginal resistance to colonization. Pediatr Nephrol. 1993;7(5):509–14. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8251310

  19. Kirjavainen PV, Pautler S, Baroja ML, et al. Abnormal immunological profile and vaginal microbiota in women prone to urinary tract infections. Clinical and vaccine immunology : CVI. 2009;16(1):29–36. https://doi.org/10.1128/CVI.00323-08.

    Article  CAS  PubMed  Google Scholar 

  20. Nienhouse V, Gao X, Dong Q, et al. Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS ONE. 2014;9(12):e114185. https://doi.org/10.1371/journal.pone.0114185

  21. • Edwards VL, Smith SB, McComb EJ, et al. The cervicovaginal microbiota-host interaction modulates Chlamydia trachomatis infection. mBio. 2019;10(4). https://doi.org/10.1128/mBio.01548-19. Edwards et al. performed a series of in vitro experiments which revealed specific mechanisms in which vaginal bacterial species alter susceptibility of the host to Chlamydia trachomatis infection. These experiments highlight how Lactobacillus-derived D(−) lactic acid reduced C. trachomatis infectivity via modulation of the host epithelia.

  22. Matu MN, Orinda GO, Njagi EN, et al. In vitro inhibitory activity of human vaginal lactobacilli against pathogenic bacteria associated with bacterial vaginosis in Kenyan women. Anaerobe. 2010;16(3):210–5. https://doi.org/10.1016/j.anaerobe.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  23. Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol. 2009;60 Suppl 6(19–26. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/20224147

  24. Aldunate M, Tyssen D, Johnson A, et al. Vaginal concentrations of lactic acid potently inactivate HIV. J Antimicrob Chemother. 2013;68(9):2015–25. https://doi.org/10.1093/jac/dkt156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nunn KL, Wang YY, Harit D, et al. Enhanced Trapping of HIV-1 by Human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. mBio. 2015;6(5):e01084–15. https://doi.org/10.1128/mBio.01084-15

  26. Nardini P, Nahui Palomino RA, Parolin C, et al. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep. 2016;6(29024. https://doi.org/10.1038/srep29024

  27. Aroutcheva AA, Simoes JA, Faro S. Antimicrobial protein produced by vaginal Lactobacillus acidophilus that inhibits Gardnerella vaginalis. Infect Dis Obstet Gynecol. 2001;9(1):33–9. https://doi.org/10.1155/S1064744901000060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dembele T, Obdrzalek VVotava M. Inhibition of bacterial pathogens by lactobacilli. Zentralbl Bakteriol. 1998;288(3):395–401. https://doi.org/10.1016/s0934-8840(98)80013-3.

    Article  CAS  PubMed  Google Scholar 

  29. Aroutcheva A, Gariti D, Simon M, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185(2):375–9. https://doi.org/10.1067/mob.2001.115867.

    Article  CAS  PubMed  Google Scholar 

  30. Maldonado-Barragan A, Caballero-Guerrero B, Martin V, et al. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol. 2016;16(37). https://doi.org/10.1186/s12866-016-0663-1

  31. Stoyancheva G, Marzotto M, Dellaglio F, et al. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Arch Microbiol. 2014;196(9):645–53. https://doi.org/10.1007/s00203-014-1003-1.

    Article  CAS  PubMed  Google Scholar 

  32. Hummelen R, Fernandes AD, Macklaim JM, et al. Deep sequencing of the vaginal microbiota of women with HIV. PLoS One. 2010;5(8):e12078. https://doi.org/10.1371/journal.pone.0012078

  33. Jespers V, Kyongo J, Joseph S, et al. A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Sci Rep. 2017;7(1):11974. https://doi.org/10.1038/s41598-017-12198-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(4680–7. https://doi.org/10.1073/pnas.1002611107

  35. France M, Ma B, Gajer P, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. 2020;8(166):https://doi.org/10.1186/s40168-020-00934-6

  36. Nieves-Ramirez ME, Partida-Rodriguez O, Moran P, et al. Cervical squamous intraepithelial lesions are associated with differences in the vaginal microbiota of Mexican women. Microbiol Spectr. 2021;9(2):e0014321. https://doi.org/10.1128/Spectrum.00143-21

  37. Marconi C, El-Zein M, Ravel J, et al. Characterization of the vaginal microbiome in women of reproductive age from 5 regions in Brazil. Sex Transm Dis. 2020;47(8):562–9. https://doi.org/10.1097/olq.0000000000001204.

    Article  CAS  PubMed  Google Scholar 

  38. Chaban B, Links MG, Jayaprakash TP, et al. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome. 2014;2(23. https://doi.org/10.1186/2049-2618-2-23

  39. Blostein F, Gelaye B, Sanchez SE, et al. Vaginal microbiome diversity and preterm birth: results of a nested case-control study in Peru. Ann Epidemiol. 2020;41(28–34. https://doi.org/10.1016/j.annepidem.2019.11.004

  40. van Houdt R, Ma B, Bruisten SM, et al. Lactobacillus iners-dominated vaginal microbiota is associated with increased susceptibility to Chlamydia trachomatis infection in Dutch women: a case-control study. Sex Transm Infect. 2018;94(2):117–23. https://doi.org/10.1136/sextrans-2017-053133.

    Article  PubMed  Google Scholar 

  41. Borgdorff H, van der Veer C, van Houdt R, et al. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS One. 2017;12(7):e0181135. https://doi.org/10.1371/journal.pone.0181135

  42. Feehily C, Crosby D, Walsh CJ, et al. Shotgun sequencing of the vaginal microbiome reveals both a species and functional potential signature of preterm birth. NPJ Biofilms Microbiomes. 2020;6(1):50. https://doi.org/10.1038/s41522-020-00162-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tamarelle J, Thiebaut ACM, Sabin B, et al. Early screening for Chlamydia trachomatis in young women for primary prevention of pelvic inflammatory disease (i-Predict): study protocol for a randomised controlled trial. Trials. 2017;18(1):534. https://doi.org/10.1186/s13063-017-2211-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shipitsyna E, Khusnutdinova T, Budilovskaya O, et al. Bacterial vaginosis-associated vaginal microbiota is an age-independent risk factor for Chlamydia trachomatis, Mycoplasma genitalium and Trichomonas vaginalis infections in low-risk women, St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis. 2020;39(7):1221–1230. https://doi.org/10.1007/s10096-020-03831-w

  45. Chen Y, Hong Z, Wang W, et al. Association between the vaginal microbiome and high-risk human papillomavirus infection in pregnant Chinese women. BMC Infect Dis. 2019;19(1):677. https://doi.org/10.1186/s12879-019-4279-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang YE, Wang Y, He Y, et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb Ecol. 2015;69(2):407–14. https://doi.org/10.1007/s00248-014-0487-1.

    Article  PubMed  Google Scholar 

  47. Sirichoat A, Buppasiri P, Engchanil C, et al. Characterization of vaginal microbiota in Thai women. PeerJ. 2018;6(e5977). https://doi.org/10.7717/peerj.5977

  48. Mehta O, Ghosh TS, Kothidar A, et al. Vaginal microbiome of pregnant Indian women: insights into the genome of dominant Lactobacillus Species. Microb Ecol. 2020;80(2):487–99. https://doi.org/10.1007/s00248-020-01501-0.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou X, Hansmann MA, Davis CC, et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol Med Microbiol. 2010;58(2):169–81. https://doi.org/10.1111/j.1574-695X.2009.00618.x.

    Article  CAS  PubMed  Google Scholar 

  50. Payne MS, Newnham JP, Doherty DA, et al. A specific bacterial DNA signature in the vagina of Australian women in midpregnancy predicts high risk of spontaneous preterm birth (the Predict1000 study). Am J Obstet Gynecol. 2021;224(6):635–6. https://doi.org/10.1016/j.ajog.2021.02.004.

    Article  CAS  PubMed  Google Scholar 

  51. Shardell M, Gravitt PE, Burke AE, et al. Association of vaginal microbiota with signs and symptoms of the genitourinary syndrome of menopause across reproductive stages. J Gerontol A Biol Sci Med Sci. 2021;76(9):1542–50. https://doi.org/10.1093/gerona/glab120.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Muhleisen ALHerbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91(42–50). https://doi.org/10.1016/j.maturitas.2016.05.015

  53. Brotman RM, Shardell MD, Gajer P, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21(5):450–8. https://doi.org/10.1097/GME.0b013e3182a4690b.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mitchell CM, Srinivasan S, Plantinga A, et al. Associations between improvement in genitourinary symptoms of menopause and changes in the vaginal ecosystem. Menopause. 2018;25(5):500–7. https://doi.org/10.1097/GME.0000000000001037.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boskey ER, Telsch KM, Whaley KJ, et al. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999;67(10):5170–5. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/10496892

  56. Olmsted SS, Khanna KV, Ng EM, et al. Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model. BMC Infect Dis. 2005;5(79. https://doi.org/10.1186/1471-2334-5-79

  57. Valore EV, Park CH, Igreti SL, et al. Antimicrobial components of vaginal fluid. Am J Obstet Gynecol. 2002;187(3):561–8. https://doi.org/10.1067/mob.2002.125280.

    Article  CAS  PubMed  Google Scholar 

  58. O’Hanlon DE, Come RA, Moench TR. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. Bmc Microbiol. 2019;19(1):13. https://doi.org/10.1186/s12866-019-1388-8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio. 2013;4(4):https://doi.org/10.1128/mBio.00460-13

  60. Linhares IM, Summers PR, Larsen B, et al. Contemporary perspectives on vaginal pH and lactobacilli. Am J Obstet Gynecol. 2011;204(2):120 e1–5. https://doi.org/10.1016/j.ajog.2010.07.010

  61. Boskey ER, Whaley KJ, Cone RA, et al. Origins of vaginal acidity: high d/l lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–13. https://doi.org/10.1093/humrep/16.9.1809.

    Article  CAS  PubMed  Google Scholar 

  62. France MT, Mendes-Soares H, Forney LJ. Genomic comparisons of Lactobacillus crispatus and Lactobacillus iners reveal potential ecological drivers of community composition in the vagina. Appl Environ Microbiol. 2016;82(24):7063–73. https://doi.org/10.1128/AEM.02385-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abdelmaksoud AA, Koparde VN, Sheth NU, et al. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria. Microbiology (Reading). 2016;162(3):466–75. https://doi.org/10.1099/mic.0.000238.

    Article  CAS  PubMed  Google Scholar 

  64. • Tamarelle J, Shardell MD, Ravel J, et al. Factors associated with incidence and spontaneous clearance of molecular-bacterial vaginosis: results from a longitudinal frequent-sampling observational study. Sex Transm Dis. 2022;49(9):649–656. https://doi.org/10.1097/OLQ.0000000000001662. Tamarelle et al. demonstrated that individuals who tend to have longitudinal L. iners-dominated vaginal microbiota profiles are 2-fold more likely to transition to molecular BV than individuals who tended to have L. crispatus- or L. gasseri-dominated longitudinal profiles.

  65. Muzny CA, Blanchard E, Taylor CM, et al. Identification of key bacteria involved in the induction of incident bacterial vaginosis: a prospective study. J Infect Dis. 2018;218(6):966–78. https://doi.org/10.1093/infdis/jiy243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tamarelle J, de Barbeyrac B, Le Hen I, et al. Vaginal microbiota composition and association with prevalent Chlamydia trachomatis infection: a cross-sectional study of young women attending a STI clinic in France. Sex Transm Infect. 2018;94(8):616–8. https://doi.org/10.1136/sextrans-2017-053346.

    Article  PubMed  Google Scholar 

  67. Tamarelle J, Ma B, Gajer P, et al. Nonoptimal vaginal microbiota after azithromycin treatment for Chlamydia trachomatis infection. J Infect Dis. 2020;221(4):627–35. https://doi.org/10.1093/infdis/jiz499.

    Article  CAS  PubMed  Google Scholar 

  68. van der Veer C, Bruisten SM, van der Helm JJ, et al. The cervicovaginal microbiota in women notified for Chlamydia trachomatis infection: a case-control study at the sexually transmitted infection outpatient clinic in Amsterdam. The Netherlands Clin Infect Dis. 2017;64(1):24–31. https://doi.org/10.1093/cid/ciw586.

    Article  CAS  PubMed  Google Scholar 

  69. Gosmann C, Anahtar MN, Handley SA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tortelli BA, Lewis WG, Allsworth JE, et al. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am J Obstet Gynecol. 2020;222(5):471 e1–471 e9. https://doi.org/10.1016/j.ajog.2019.10.008

  71. McKloud E, Delaney C, Sherry L, et al. Recurrent vulvovaginal candidiasis: a dynamic interkingdom biofilm disease of Candida and Lactobacillus. mSystems. 2021;6(4):e0062221. https://doi.org/10.1128/mSystems.00622-21

  72. Novak J, Ravel J, Ma B, et al. Characteristics associated with Lactobacillus iners-dominated vaginal microbiota. Sex Transm Infect. 2022;98(5):353–9. https://doi.org/10.1136/sextrans-2020-054824.

    Article  PubMed  Google Scholar 

  73. Brown SE, Schwartz JA, Robinson CK, et al. The vaginal microbiota and behavioral factors associated with genital Candida albicans detection in reproductive-age women. Sex Transm Dis. 2019;46(11):753–8. https://doi.org/10.1097/OLQ.0000000000001066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitra A, MacIntyre DA, Marchesi JR, et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome. 2016;4(1):58. https://doi.org/10.1186/s40168-016-0203-0.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brotman RM, Shardell MD, Gajer P, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723–33. https://doi.org/10.1093/infdis/jiu330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reimers LL, Mehta SD, Massad LS, et al. The cervicovaginal microbiota and its associations with human papillomavirus detection in HIV-infected and HIV-uninfected women. J Infect Dis. 2016;214(9):1361–9. https://doi.org/10.1093/infdis/jiw374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berggrund M, Gustavsson I, Aarnio R, et al. Temporal changes in the vaginal microbiota in self-samples and its association with persistent HPV16 infection and CIN2. Virol J. 2020;17(1):147. https://doi.org/10.1186/s12985-020-01420-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52–132ra52. [Online]. Available: http://stm.sciencemag.org/cgi/doi/https://doi.org/10.1126/scitranslmed.3003605

  79. • Munoz A, Hayward MR, Bloom SM, et al. Modeling the temporal dynamics of cervicovaginal microbiota identifies targets that may promote reproductive health. Microbiome. 2021;9(1):163. https://doi.org/10.1186/s40168-021-01096-9. Munoz et al. presented that L. crispatus-dominated microbiota in sub-Saharan African women are more stable than L. iners states. This study substantiated prior work by Gajer et al. (2012) and suggests targeting L. iners communities which transition to L. crispatus-dominated communities as an intervention to improve BV treatment outcomes.

  80. Costello EK, Stagaman K, Dethlefsen L, et al. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62. https://doi.org/10.1126/science.1224203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Lee CY, Cheu RK, Lemke MM, et al. Quantitative modeling predicts mechanistic links between pre-treatment microbiome composition and metronidazole efficacy in bacterial vaginosis. Nat Commun. 2020;11(1):6147. https://doi.org/10.1038/s41467-020-19880-w. Lee et al. performed in silico modeling, in vitro experiments, and epidemiologic analyses, all of which indicated pre-treatment L. iners may interfere with and reduce the efficacy of metronidazole BV treatment. Findings remain to be validated in larger epidemiologic studies and underlying mechanisms have not been investigated, but these results may contribute to identifying novel BV treatment strategies.

  82. Mollin A, Katta M, Sobel JD, et al. Association of key species of vaginal bacteria of recurrent bacterial vaginosis patients before and after oral metronidazole therapy with short- and long-term clinical outcomes. PLoS One. 2022;17(7):e0272012. https://doi.org/10.1371/journal.pone.0272012

  83. Serebrenik J, Wang T, Hunte R, et al. Differences in vaginal microbiota, host transcriptome, and proteins in women with bacterial vaginosis are associated with metronidazole treatment response. J Infect Dis. 2021;224(12):2094–104. https://doi.org/10.1093/infdis/jiab266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Verwijs MC, Agaba SK, Darby AC, et al. Impact of oral metronidazole treatment on the vaginal microbiota and correlates of treatment failure. Am J Obstet Gynecol. 2020;222(2):157 e1–157 e13. https://doi.org/10.1016/j.ajog.2019.08.008

  85. Xiao B, Wu C, Song W, et al. Association analysis on recurrence of bacterial vaginosis revealed microbes and clinical variables important for treatment outcome. Front Cell Infect Microbiol. 2019;9(189. https://doi.org/10.3389/fcimb.2019.00189

  86. Lehtoranta L, Hibberd AA, Reimari J, et al. Recovery of vaginal microbiota after standard treatment for bacterial vaginosis infection: an observational study. Microorganisms. 2020;8(6):https://doi.org/10.3390/microorganisms8060875

  87. Gustin AT, Thurman AR, Chandra N, et al. Recurrent bacterial vaginosis following metronidazole treatment is associated with microbiota richness at diagnosis. Am J Obstet Gynecol. 2022;226(2):225 e1–225 e15. https://doi.org/10.1016/j.ajog.2021.09.018

  88. • Mayer BT, Srinivasan S, Fiedler TL, et al. Rapid and profound shifts in the vaginal microbiota following antibiotic treatment for bacterial vaginosis. The Journal of Infectious Diseases. 2015;212(5):793–802. https://doi.org/10.1093/infdis/jiv079. This important 2015 study by Mayer et al. highlighted the expansion of L. iners following metronidazole treatment of BV.

  89. Ravel J, Brotman RM, Gajer P, et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome. 2013;1(1):29. https://doi.org/10.1186/2049-2618-1-29.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim H, Kim T, Kang J, et al. Is lactobacillus gram-positive? A case study of Lactobacillus iners. Microorganisms. 2020;8(7):https://doi.org/10.3390/microorganisms8070969

  91. De Backer E, Verhelst R, Verstraelen H, et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 2007;7(115. https://doi.org/10.1186/1471-2180-7-115

  92. Nugent RP, Krohn MAHillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297–301. https://doi.org/10.1128/jcm.29.2.297-301.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. •• McKinnon LR, Achilles SL, Bradshaw CS, et al. The evolving facets of bacterial vaginosis: implications for HIV transmission. AIDS Res Hum Retroviruses. 2019;35(3):219–228. https://doi.org/10.1089/AID.2018.0304. McKinnon et al. introduced standardized categories to describe the different methods by which bacterial vaginosis is defined in clinical and research settings, including Nugent-BV, Amsel-BV, and Molecular-BV. The authors also urged researchers to employ a range of omics techniques, including metagenomics, transcriptomics, proteomics, and metabolomics, in conjunction with immunological measurements, to advance our knowledge of BV.

  94. Srinivasan S, Morgan MT, Liu C, et al. More than meets the eye: associations of vaginal bacteria with gram stain morphotypes using molecular phylogenetic analysis. PLoS One. 2013;8(10):e78633. https://doi.org/10.1371/journal.pone.0078633

  95. •• Ma B, France MT, Crabtree J, et al. A comprehensive non-redundant gene catalog reveals extensive within-community intraspecies diversity in the human vagina. Nat Commun. 2020;11(1):940. https://doi.org/10.1038/s41467-020-14677-3. Ma et al. first described multiple strains of the same species in the vaginal microbiome using metagenomic sequencing and helped reveal the complexity of the vaginal microbiome. The manuscript emphasized the importance of considering strain-level functional mechanisms in understanding the relationships between the vaginal microbiome and genital health.

  96. Callahan BJ, DiGiulio DB, Goltsman DSA, et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci U S A. 2017;114(37):9966–71. https://doi.org/10.1073/pnas.1705899114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Davis NM, Proctor DM, Holmes SP, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):226. https://doi.org/10.1186/s40168-018-0605-296.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Macklaim JM, Gloor GB, Anukam KC, et al. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(4688–95. https://doi.org/10.1073/pnas.1000086107

  99. Mendes-Soares H, Suzuki H, Hickey RJ, et al. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol. 2014;196(7):1458–70. https://doi.org/10.1128/JB.01439-13

  100. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014;209(12):1989–99. https://doi.org/10.1093/infdis/jiu004.

    Article  CAS  PubMed  Google Scholar 

  101. Anahtar MN, Byrne EH, Doherty KE, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965–76. https://doi.org/10.1016/j.immuni.2015.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Falsen E, Pascual C, Sjoden B, et al. Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol. 1999;49 Pt 1(217–21. https://doi.org/10.1099/00207713-49-1-217

  103. Lopez-Maury L, Marguerat JS, Bahler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008;9(8):583–93. https://doi.org/10.1038/nrg2398.

    Article  CAS  PubMed  Google Scholar 

  104. Rampersaud R, Planet PJ, Randis TM, et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–41. https://doi.org/10.1128/JB.00694-10.

    Article  CAS  PubMed  Google Scholar 

  105. Macklaim JM, Fernandes AD, Di Bella JM, et al. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome. 2013;1(1):12. https://doi.org/10.1186/2049-2618-1-12.

    Article  PubMed  PubMed Central  Google Scholar 

  106. • France MT, Fu L, Rutt L, et al. Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data. Genome Biol. 2022;23(1):66. https://doi.org/10.1186/s13059-022-02635-9. France et al. demonstrated that a species’ gene expression is not directly correlated to its relative abundance in the vaginal microbiome.

  107. •• Bloom SM, Mafunda NA, Woolston BM, et al. Cysteine dependence of Lactobacillus iners is a potential therapeutic target for vaginal microbiota modulation. Nat Microbiol. 2022;7(3):434–450. https://doi.org/10.1038/s41564-022-01070-7. Bloom et al. reported a method to cultivate L. iners by exploiting its’ dependence on exogenous cysteine. They further demonstrate that by introducing a cysteine uptake inhibitor with metronidazole, non-L. iners lactobacilli were able to grow following.

Download references

Acknowledgements

The authors acknowledge Lindsay Rutt and Breanna Shirtliff for providing images of Gram-stained cultures.

Funding

This review article was supported in part by the National Institute of Allergy and Infectious Diseases under award numbers K01-AI163413 (JH), R01-AI116799 (RB), T32-AI162579 (KC) and R01-AI119012 (RB) and the National Institute for Nursing Research under award number R01-NR015495 (JR).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and revision of the manuscript. All authors agreed and approved the final manuscript.

Corresponding author

Correspondence to Johanna B. Holm.

Ethics declarations

Conflict of Interest

JR is co-founder of LUCA Biologics, a biotechnology company focusing on translating microbiome research into live biotherapeutics drugs for women’s health. Dr. Holm reports personal fees from Intralytix Inc., outside the submitted work. All other authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Female Genital Tract Infections

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, J.B., Carter, K.A., Ravel, J. et al. Lactobacillus iners and Genital Health: Molecular Clues to an Enigmatic Vaginal Species. Curr Infect Dis Rep 25, 67–75 (2023). https://doi.org/10.1007/s11908-023-00798-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-023-00798-5

Keywords

Navigation