Skip to main content

Advertisement

Log in

WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer’s Disease

  • Hypertension and the Brain (I Nasrallah, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer’s disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection?

Recent Findings

We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD.

Summary

This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36:2284–309.

    Article  CAS  PubMed  Google Scholar 

  2. • Buford TW. Hypertension and aging. Ageing Res Rev. 2016;26:96–111. This study highlighted the multi-dimensional risks of hypertension among older adults and discussed potential strategies for treatment and future areas of research for improving overall care for older adults with hypertension.

  3. Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, et al. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23:267–300.

    Article  CAS  PubMed  Google Scholar 

  4. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139:1136–9.

    Article  CAS  PubMed  Google Scholar 

  5. Chung JA, Cummings JL. Neurobehavioral and neuropsychiatric symptoms in Alzheimer’s disease: characteristics and treatment. Neurol Clin. 2000;18:829–46.

    Article  CAS  PubMed  Google Scholar 

  6. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2007;3:186–91.

    Article  Google Scholar 

  7. Vallée A, Lecarpentier Y. Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci. 2016;10:459.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pereira AC, Gray JD, Kogan JF, Davidson RL, Rubin TG, Okamoto M, et al. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry. 2017;22:296–305.

    Article  CAS  PubMed  Google Scholar 

  9. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.

    Article  CAS  Google Scholar 

  10. Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease. Prog Brain Res. 2002;136:467–86.

    Article  CAS  PubMed  Google Scholar 

  11. Neves G, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 2008;9:65–75.

    Article  CAS  PubMed  Google Scholar 

  12. Ehrnhoefer DE, Wong BKY, Hayden MR. Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat Rev Drug Discov. 2011;10:853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol. 2011;70:532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wan W, Xia S, Kalionis B, Liu L, Li Y. The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? BioMed Res Int. 2014;2014: 301575.

    Article  PubMed  PubMed Central  Google Scholar 

  15. •• Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis. 2017;262:171–8. Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.

  16. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci. 2018;193:141–52.

    Article  PubMed  Google Scholar 

  17. Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J Neurol Sci. 2012;322:141–7.

    Article  CAS  PubMed  Google Scholar 

  18. Loh KM, van Amerongen R, Nusse R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell. 2016;38:643–55.

    Article  CAS  PubMed  Google Scholar 

  19. Oren O, Smith BD. Eliminating cancer stem cells by targeting embryonic signaling pathways. Stem Cell Rev. 2017;13:17–23.

    Article  CAS  Google Scholar 

  20. Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 2012;7:725–30.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marchetti B, Pluchino S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med. 2013;19:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in neurodegenerative diseases: interplay between canonical WNT/beta-catenin pathway-PPAR gamma, energy metabolism and circadian rhythms. Neuromolecular Med. 2018;20:174–204.

    Article  PubMed  Google Scholar 

  23. Lecarpentier Y, Claes V, Duthoit G, Hébert J-L. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol. 2014;5:429.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol. 2016;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

  25. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  CAS  PubMed  Google Scholar 

  26. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol [Internet]. 2009 [cited 2017 Apr 7]; Available from: http://www.nature.com/doifinder/10.1038/nrm2717

  28. Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem. 2004;279:35583–94.

    Article  CAS  PubMed  Google Scholar 

  29. Rosi MC, Luccarini I, Grossi C, Fiorentini A, Spillantini MG, Prisco A, et al. Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem. 2010;112:1539–51.

    Article  CAS  PubMed  Google Scholar 

  30. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  31. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2012;7:788–807.

    Article  Google Scholar 

  32. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vallée A, Lecarpentier Y, Vallée J-N. Hypothesis of opposite interplay between the canonical WNT/beta-catenin pathway and PPAR gamma in primary central nervous system lymphomas. Curr Issues Mol Biol. 2019;31:1–20.

    Article  PubMed  Google Scholar 

  34. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 1997;16:3797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hur E-M, Zhou F-Q. GSK3 signalling in neural development. Nat Rev Neurosci. 2010;11:539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS, Cregan SP. The JNK- and AKT/GSK3β-signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. Hetman M, editor. PLoS ONE. 2012;7:e46885.

  38. Orellana AMM, Vasconcelos AR, Leite JA, de Sá LL, Andreotti DZ, Munhoz CD, et al. Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/ β-CATENIN signaling in rat hippocampus. Aging. 2015;7:1094–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKernan AM, Calaresu FR. Insulin microinjection into the nucleus tractus solitarii of the rat attenuates the baroreceptor reflex. J Auton Nerv Syst. 1996;61:128–38.

    Article  CAS  PubMed  Google Scholar 

  40. Ruggeri P, Molinari C, Brunori A, Cogo CE, Mary DA, Picchio V, et al. The direct effect of insulin on barosensitive neurones in the nucleus tractus solitarii of rats. NeuroReport. 2001;12:3719–22.

    Article  CAS  PubMed  Google Scholar 

  41. Chiang HT, Cheng WH, Lu PJ, Huang HN, Lo WC, Tseng YC, et al. Neuronal nitric oxide synthase activation is involved in insulin-mediated cardiovascular effects in the nucleus tractus solitarii of rats. Neuroscience. 2009;159:727–34.

    Article  CAS  PubMed  Google Scholar 

  42. Huang H-N, Lu P-J, Lo W-C, Lin C-H, Hsiao M, Tseng C-J. In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation. 2004;110:2476–83.

    Article  PubMed  Google Scholar 

  43. Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, Yen MH. Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertens Dallas Tex. 1979;1996(27):36–42.

    Google Scholar 

  44. Cheng P-W, Chen Y-Y, Cheng W-H, Lu P-J, Chen H-H, Chen B-R, et al. Wnt signaling regulates blood pressure by downregulating a GSK-3β-mediated pathway to enhance insulin signaling in the central nervous system. Diabetes. 2015;64:3413–24.

    Article  CAS  PubMed  Google Scholar 

  45. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol. 2001;3:683–6.

    Article  CAS  PubMed  Google Scholar 

  46. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88.

    Article  CAS  PubMed  Google Scholar 

  47. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin. 2017;49:853–66.

    Article  PubMed  Google Scholar 

  48. Thies W. Stopping a thief and killer: Alzheimer’s disease crisis demands greater commitment to research. Alzheimers Dement J Alzheimers Assoc. 2011;7:175–6.

    Article  Google Scholar 

  49. Silva-Alvarez C, Arrázola MS, Godoy JA, Ordenes D, Inestrosa NC. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics. Front Cell Neurosci. 2013;7:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001;411:321–5.

    Article  CAS  PubMed  Google Scholar 

  51. Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, et al. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci Off J Soc Neurosci. 2004;24:6021–7.

    Article  CAS  Google Scholar 

  52. Bhat RV, Andersson U, Andersson S, Knerr L, Bauer U, Sundgren-Andersson AK. The conundrum of GSK3 inhibitors: is it the dawn of a new beginning? J Alzheimers Dis JAD. 2018;64:S547–54.

    Article  CAS  PubMed  Google Scholar 

  53. Buée L, Troquier L, Burnouf S, Belarbi K, Van der Jeugd A, Ahmed T, et al. From tau phosphorylation to tau aggregation: what about neuronal death? Biochem Soc Trans. 2010;38:967–72.

    Article  PubMed  Google Scholar 

  54. Mendoza J, Sekiya M, Taniguchi T, Iijima KM, Wang R, Ando K. Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro. J Proteome Res. 2013;12:2654–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013;7:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oliva CA, Vargas JY, Inestrosa NC. Wnt signaling: role in LTP, neural networks and memory. Ageing Res Rev. 2013;12:786–800.

    Article  CAS  PubMed  Google Scholar 

  57. Inestrosa NC, Varela-Nallar L. Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol. 2014;6:64–74.

    Article  PubMed  Google Scholar 

  58. Li X-H, Du L-L, Cheng X-S, Jiang X, Zhang Y, Lv B-L, et al. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013;4: e673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gouras GK, Almeida CG, Takahashi RH. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging. 2005;26:1235–44.

    Article  CAS  PubMed  Google Scholar 

  60. Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis JAD. 2001;3:75–80.

    Article  CAS  PubMed  Google Scholar 

  61. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010;12:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshimura Y, Ichinose T, Yamauchi T. Phosphorylation of tau protein to sites found in Alzheimer’s disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett. 2003;353:185–8.

    Article  CAS  PubMed  Google Scholar 

  63. Ferrer I, Barrachina M, Puig B, Martínez de Lagrán M, Martí E, Avila J, et al. Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis. 2005;20:392–400.

  64. Dolan PJ, Johnson GVW. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Devel. 2010;13:595–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. NeuroImmunoModulation. 2012;19:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med. 2007;13:460–9.

    Article  CAS  PubMed  Google Scholar 

  68. Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010;58:253–63.

    PubMed  Google Scholar 

  69. Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. The Wnt/β-catenin signaling pathway controls the inflammatory response in infections caused by pathogenic bacteria. Mediators Inflamm. 2014;2014: 310183.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Deng J, Miller SA, Wang H-Y, Xia W, Wen Y, Zhou BP, et al. Beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002;2:323–34.

    Article  CAS  PubMed  Google Scholar 

  71. Deng J, Xia W, Miller SA, Wen Y, Wang H-Y, Hung M-C. Crossregulation of NF-kappaB by the APC/GSK-3beta/beta-catenin pathway. Mol Carcinog. 2004;39:139–46.

    Article  CAS  PubMed  Google Scholar 

  72. Umar S, Sarkar S, Wang Y, Singh P. Functional cross-talk between beta-catenin and NFkappaB signaling pathways in colonic crypts of mice in response to progastrin. J Biol Chem. 2009;284:22274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ajmone-Cat MA, D’Urso MC, di Blasio G, Brignone MS, De Simone R, Minghetti L. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav Immun. 2016;55:225–35.

    Article  CAS  PubMed  Google Scholar 

  74. Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Borrell-Pagès M, Romero JC, Juan-Babot O, Badimon L. Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages. Eur Heart J. 2011;32:2841–50.

    Article  PubMed  Google Scholar 

  76. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406:86–90.

    Article  CAS  PubMed  Google Scholar 

  77. Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010;31:24–31.

    Article  CAS  PubMed  Google Scholar 

  78. Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272:18779–89.

    Article  CAS  PubMed  Google Scholar 

  79. Buijs FN, Cazarez F, Basualdo MC, Scheer FAJL, Perusquía M, Centurion D, et al. The suprachiasmatic nucleus is part of a neural feedback circuit adapting blood pressure response. Neuroscience. 2014;266:197–207.

  80. Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Lopes OU. Role of the medulla oblongata in hypertension. Hypertens Dallas Tex. 1979;2001(38):549–54.

    Google Scholar 

  81. Sato MA, Menani JV, Lopes OU, Colombari E. Commissural NTS lesions and cardiovascular responses in aortic baroreceptor-denervated rats. Hypertens Dallas Tex. 1979;1999(34):739–43.

    Google Scholar 

  82. Aronin N, Sagar SM, Sharp FR, Schwartz WJ. Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei. Proc Natl Acad Sci U S A. 1990;87:5959–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC, et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol. 2003;464:36–48.

    Article  PubMed  Google Scholar 

  84. Kalsbeek A, Palm IF, La Fleur SE, Scheer FAJL, Perreau-Lenz S, Ruiter M, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21:458–69.

  85. Kannan H, Yamashita H. Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system in rats. Brain Res. 1985;329:205–12.

    Article  CAS  PubMed  Google Scholar 

  86. Jiang Z, Rajamanickam S, Justice NJ. Local corticotropin-releasing factor signaling in the hypothalamic paraventricular nucleus. J Neurosci Off J Soc Neurosci. 2018;38:1874–90.

    Article  CAS  Google Scholar 

  87. Chan RK, Peto CA, Sawchenko PE. Fine structure and plasticity of barosensitive neurons in the nucleus of solitary tract. J Comp Neurol. 2000;422:338–51.

    Article  CAS  PubMed  Google Scholar 

  88. Weston M, Wang H, Stornetta RL, Sevigny CP, Guyenet PG. Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. J Comp Neurol. 2003;460:525–41.

    Article  PubMed  Google Scholar 

  89. • Lin C-LG, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem. 2012;4:1689–700. The glial glutamate transporter EAAT2 plays a major role in glutamate clearance. Dysfunction or reduced expression of EAAT2 is observed in neurodegenerative diseases, as in Alzheimer’s disease.

  90. •• Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016;13:242. ß-catenin regulates key proteins responsible for excitatory glutamate neurotransmission in vitro and in vivo and reveal the therapeutic potential of ß-catenin modulation in treating diseases with abnormal glutamatergic neurotransmission and excitotoxi.

  91. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis JAD. 2007;11:97–116.

    Article  CAS  PubMed  Google Scholar 

  92. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006;572:477–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.

    Article  CAS  PubMed  Google Scholar 

  94. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63:178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng L, Yin W-J, Zhang J-F, Qi J-S. Amyloid beta-protein fragments 25–35 and 31–35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synap N Y N. 2009;63:206–14.

    Article  CAS  Google Scholar 

  96. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci Off J Soc Neurosci. 2011;31:6627–38.

    Article  CAS  Google Scholar 

  97. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005;8:1051–8.

    Article  CAS  PubMed  Google Scholar 

  98. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron. 2003;37:925–37.

    Article  CAS  PubMed  Google Scholar 

  99. Chao CC, Hu S, Ehrlich L, Peterson PK. Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun. 1995;9:355–65.

    Article  CAS  PubMed  Google Scholar 

  100. Cadoret A, Ovejero C, Terris B, Souil E, Lévy L, Lamers WH, et al. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002;21:8293–301.

    Article  CAS  PubMed  Google Scholar 

  101. Audard V, Cavard C, Richa H, Infante M, Couvelard A, Sauvanet A, et al. Impaired E-cadherin expression and glutamine synthetase overexpression in solid pseudopapillary neoplasm of the pancreas. Pancreas. 2008;36:80–3.

    Article  CAS  PubMed  Google Scholar 

  102. Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, Al-Harthi L. Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol. 2012;86:1911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eid T, Tu N, Lee T-SW, Lai JCK. Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int. 2013;63:670–81.

  104. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in Gliomas: interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Front Physiol. 2017;8:352.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vallée A, Lecarpentier Y, Vallée J-N. Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 2019;8.

  106. Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018;9:745.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol Baltim Md. 1950;2011(186):6771–8.

    Google Scholar 

  108. Paul JR, DeWoskin D, McMeekin LJ, Cowell RM, Forger DB, Gamble KL. Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability. Nat Commun. 2016;7:13470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vallée A, Lecarpentier Y, Vallée J-N. Circadian rhythms and energy metabolism reprogramming in Parkinson’s disease. Curr Issues Mol Biol. 2019;31:21–44.

    Article  PubMed  Google Scholar 

  110. Norenberg MD, Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161:303–10.

    Article  CAS  PubMed  Google Scholar 

  111. Lauriat TL, McInnes LA. EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry. 2007;12:1065–78.

    Article  CAS  PubMed  Google Scholar 

  112. Sitcheran R, Gupta P, Fisher PB, Baldwin AS. Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J. 2005;24:510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. •• Lecarpentier Y, Schussler O, Hébert J-L, Vallée A. Molecular mechanisms underlying the circadian rhythm of blood pressure in normotensive subjects. Curr Hypertens Rep. 2020;22:50. The circadian regulation of blood pressure appears largely controlled in normotensive subjects by the canonical WNT/ß-catenin pathway involving the suprachiasmatic nucleus, astrocytes, and glutamatergic neurons.

  114. Kustova Y, Ha JH, Espey MG, Sei Y, Morse D, Basile AS. The pattern of neurotransmitter alterations in LP-BM5 infected mice is consistent with glutamatergic hyperactivation. Brain Res. 1998;793:119–26.

    Article  CAS  PubMed  Google Scholar 

  115. Potter MC, Figuera-Losada M, Rojas C, Slusher BS. Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2013;8:594–607.

    Article  Google Scholar 

  116. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992;326:1464–8.

    Article  CAS  PubMed  Google Scholar 

  117. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698:6–18.

    Article  CAS  PubMed  Google Scholar 

  118. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther. 2014;6:35.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jin Y, Yan E, Fan Y, Guo X, Zhao Y, Zong Z, et al. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol Sin. 2007;28:1881–90.

    Article  CAS  PubMed  Google Scholar 

  120. Zhai Y, Sun Z, Zhang J, Kang K, Chen J, Zhang W. Activation of the TOR signalling pathway by glutamine regulates insect fecundity. Sci Rep. 2015;5:10694.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bott AJ, Peng I-C, Fan Y, Faubert B, Zhao L, Li J, et al. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 2015;22:1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s Disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP, Shoulson I. Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science. 1985;227:1496–9.

    Article  CAS  PubMed  Google Scholar 

  124. Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol. 1997;56:901–11.

    Article  CAS  PubMed  Google Scholar 

  125. Simpson MD, Royston MC, Deakin JF, Cross AJ, Mann DM, Slater P. Regional changes in [3H]D-aspartate and [3H]TCP binding sites in Alzheimer’s disease brains. Brain Res. 1988;462:76–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Alexandre Vallée.

Ethics declarations

Conflict of Interest

Alexandre Vallee, Jean-Noel Vallee, and Tyves Lecarpentier declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, A., Vallée, JN. & Lecarpentier, Y. WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer’s Disease. Curr Hypertens Rep 24, 465–475 (2022). https://doi.org/10.1007/s11906-022-01209-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01209-1

Keywords

Navigation