Skip to main content

Advertisement

Log in

Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension

  • Prevention of Hypertension: Public Health Challenges (Y Yano, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence that artificial intelligence (AI) is useful for predicting risk factors for hypertension and its management is emerging. However, we are far from harnessing the innovative AI tools to predict these risk factors for hypertension and applying them to personalized management. This review summarizes recent advances in the computer science and medical field, illustrating the innovative AI approach for potential prediction of early stages of hypertension. Additionally, we review ongoing research and future implications of AI in hypertension management and clinical trials, with an eye towards personalized medicine.

Recent Findings

Although recent studies demonstrate that AI in hypertension research is feasible and possibly useful, AI-informed care has yet to transform blood pressure (BP) control. This is due, in part, to lack of data on AI’s consistency, accuracy, and reliability in the BP sphere. However, many factors contribute to poorly controlled BP, including biological, environmental, and lifestyle issues. AI allows insight into extrapolating data analytics to inform prescribers and patients about specific factors that may impact their BP control.

Summary

To date, AI has been mainly used to investigate risk factors for hypertension, but has not yet been utilized for hypertension management due to the limitations of study design and of physician’s engagement in computer science literature. The future of AI with more robust architecture using multi-omics approaches and wearable technology will likely be an important tool allowing to incorporate biological, lifestyle, and environmental factors into decision-making of appropriate drug use for BP control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. •• Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet (London). 2007;370:591–603. This is a very useful review for hypertension

    Article  CAS  Google Scholar 

  2. Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet (London). 2015;386:801–12.

    Article  Google Scholar 

  3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.

    Article  PubMed  Google Scholar 

  4. Gordon RD. Heterogeneous hypertension. Nat Genet. 1995;11:6–9.

    Article  PubMed  CAS  Google Scholar 

  5. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint national committee (jnc 8). JAMA. 2014;311:507–20.

    Article  PubMed  CAS  Google Scholar 

  6. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  PubMed  CAS  Google Scholar 

  7. American Diabetes A. Standards of medical care in diabetes—2013. Diabetes Care. 2013;36:S11–66.

    Article  CAS  Google Scholar 

  8. Leung AA, Daskalopoulou SS, Dasgupta K, McBrien K, Butalia S, Zarnke KB, et al. Hypertension Canada’s 2017 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults. Can J Cardiol. 2017;33:557–76.

    Article  PubMed  Google Scholar 

  9. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol 2017.

  10. Gelman A, Stern H. The difference between “significant” and “not significant” is not itself statistically significant. Am Stat. 2006;60:328–31.

    Article  Google Scholar 

  11. Fergusson D, Aaron SD, Guyatt G, Hébert P. Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis. BMJ. 2002;325:652–4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rubin DB, van der Laan MJ. Statistical issues and limitations in personalized medicine research with clinical trials. Int J Biostat. 2012;8:18.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016;375:65–74.

    Article  PubMed  Google Scholar 

  14. •• Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657–64. This is a concise summary of the important aspect of using artificial intelligence in cardiovascular medicine.

    Article  PubMed  Google Scholar 

  15. LeCun Y, Bottou L, Orr GB, Müller K-R. Efficient backprop. Neural networks: tricks of the trade. Springer; 1998:9–50.

  16. Krittanawong C, Tunhasiriwet A, Zhang H, Wang Z, Aydar M, Kitai T. Deep learning with unsupervised feature in echocardiographic imaging. J Am Coll Cardiol. 2017;69:2100–1.

    Article  PubMed  Google Scholar 

  17. Krittanawong C, Kitai T. Identifying genotypes and phenotypes of cardiovascular diseases using big data analytics. JAMA Cardiol. 2017;2:1169–70.

    Article  PubMed  Google Scholar 

  18. Krittanawong C. Future physicians in the era of precision cardiovascular medicine. Circulation. 2017;136:1572–4.

    Article  PubMed  Google Scholar 

  19. Introduction: standards of medical care in diabetes—2018. Diabetes Care. 2018;41:S1.

  20. Perkovic V, Rodgers A. Redefining blood-pressure targets—sprint starts the marathon. N Engl J Med. 2015;373:2175–8.

    Article  PubMed  Google Scholar 

  21. de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:1273–84.

    Article  PubMed  Google Scholar 

  22. de Boer IH, Bakris G, Cannon CP. Individualizing blood pressure targets for people with diabetes and hypertension: comparing the ADA and the ACC/AHA recommendations. JAMA. 2018;319:1319–20.

    Article  PubMed  Google Scholar 

  23. • Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810. This meta-analyses provides evidence of target blood pressure in type 2 diabetes mellitus.

    Article  PubMed  CAS  Google Scholar 

  24. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  PubMed  CAS  Google Scholar 

  25. Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  PubMed  CAS  Google Scholar 

  26. Dwivedi RS, Herman JG, McCaffrey T, Raj DSC. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 2011;79:23–32. https://doi.org/10.1038/ki.2010.1335.

    Article  PubMed  Google Scholar 

  27. Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure. Hypertension (Dallas Tex: 1979). 2016;68:e7.

    CAS  Google Scholar 

  28. Forman JP, Curhan GC, Taylor EN. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension (Dallas Tex: 1979). 2008;52:828–32.

    Article  CAS  Google Scholar 

  29. Victor RG, Lynch K, Li N, Blyler C, Muhammad E, Handler J, et al. A cluster-randomized trial of blood-pressure reduction in black barbershops. N Engl J Med. 2018;378:1291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Desvarieux M, Demmer RT, Jacobs DR Jr, Rundek T, Boden-Albala B, Sacco RL, et al. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (invest). J Hypertens. 2010;28:1413–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Port S. Systolic blood pressure and mortality. Lancet. 2000;356:683.

    Article  Google Scholar 

  32. Port S, Garfinkel A, Boyle N. There is a non-linear relationship between mortality and blood pressure. Eur Heart J. 2000;21:1635–8.

    Article  PubMed  CAS  Google Scholar 

  33. Mancia G, Facchetti R, Grassi G, Bombelli M. Adverse prognostic value of persistent office blood pressure elevation in white coat hypertension. Hypertension (Dallas Tex: 1979). 2015;66:437–44.

    Article  CAS  Google Scholar 

  34. Krittanawong C, Aydar M, Kitai T. Pokemon go: digital health interventions to reduce cardiovascular risk. Cardiol Young. 2017;27:1625–6.

    Article  PubMed  Google Scholar 

  35. Krittanawong C, Tunhasiriwet A, Chirapongsathorn S, Kitai T. Tweeting influenza vaccine to cardiovascular health community. Eur J Cardiovasc Nurs. 2017;16:704–6.

    Article  PubMed  Google Scholar 

  36. Krittanawong C, Wang Z. Mining twitter to understand the smoking cessation barriers. World J Cardiol. 2017;9:794–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates th17 axis and disease. Nature. 2017;551:585–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, et al. Administration of lactobacillus helveticus ns8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 2015;310:561–77.

    Article  PubMed  CAS  Google Scholar 

  40. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47:1282–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bzdok D, Krzywinski M, Altman N. Machine learning: a primer. Nat Methods. 2017;14:1119–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. • Bzdok D, Altman N, Krzywinski M. Point of significance: statistics versus machine learning. Nat Methods. 2018;15:233–4. This is a useful review comparing between statistics and machine learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ture M, Kurt I, Turhan Kurum A, Ozdamar K. Comparing classification techniques for predicting essential hypertension. Expert Syst Appl. 2005;29:583–8.

    Article  Google Scholar 

  44. LaFreniere D, Zulkernine F, Barber D, Martin K. Using machine learning to predict hypertension from a clinical dataset. 2016 IEEE Symposium Series on Computational Intelligence (SSCI). 2016:1–7.

  45. Cawley GC, Talbot NL. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107.

    Google Scholar 

  46. Gao J, Shi D, Liu X. Significant vector learning to construct sparse kernel regression models. Neural Netw. 2007;20:791–8.

    Article  PubMed  Google Scholar 

  47. Dueck D, Frey BJ. Non-metric affinity propagation for unsupervised image categorization. 2007 IEEE 11th International Conference on Computer Vision. 2007:1–8.

  48. Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967;32:241–54.

    Article  PubMed  CAS  Google Scholar 

  49. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131:269–79.

    Article  PubMed  Google Scholar 

  50. Love BC. Comparing supervised and unsupervised category learning. Psychon Bull Rev. 2002;9:829–35.

    Article  PubMed  Google Scholar 

  51. Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC. Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics. 2006;22:2405–12.

    Article  PubMed  CAS  Google Scholar 

  52. Kerr G, Ruskin HJ, Crane M, Doolan P. Techniques for clustering gene expression data. Comput Biol Med. 2008;38:283–93.

    Article  PubMed  CAS  Google Scholar 

  53. Hibbs MA, Dirksen NC, Li K, Troyanskaya OG. Visualization methods for statistical analysis of microarray clusters. BMC Bioinformatics. 2005;6:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sheng Q, Moreau Y, Smet Frank D, Marchal K, Y MBD. Advances in cluster analysis of microarray data t2. Data analysis and visualization in genomics and proteomics t3. Wiley online books.

  55. Abdi H, Williams Lynne J. Principal component analysis. Wiley Interdiscip Rev: Comput Stat. 2010;2:433–59.

    Article  Google Scholar 

  56. Zhang Y, Schneider JG. Projection penalties: dimension reduction without loss. Proceedings of the 27th International Conference on Mach Learn (ICML-10). 2010:1223–1230.

  57. Krittanawong C, Kukin ML. Current management and future directions of heart failure with preserved ejection fraction: a contemporary review. Curr Treat Options Cardiovasc Med. 2018;20:28.

    Article  PubMed  Google Scholar 

  58. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One. 2013;8:e66341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rodrigues JC, Amadu AM, Ghosh Dastidar A, McIntyre B, Szantho GV, Lyen S, et al. ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2017;18:441–50.

    Article  PubMed  Google Scholar 

  60. Saeki M, Sato N, Kawasaki M, Tanaka R, Nagaya M, Watanabe T, et al. Left ventricular layer function in hypertension assessed by myocardial strain rate using novel one-beat real-time three-dimensional speckle tracking echocardiography with high volume rates. Hypertens Res. 2015;38:551–9.

    Article  PubMed  Google Scholar 

  61. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digital Medicine. 2018;1:6.

    Article  Google Scholar 

  62. Ji S, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell. 2013;35:221–31.

    Article  PubMed  Google Scholar 

  63. van Everdingen WM, Maass AH, Vernooy K, Meine M, Allaart CP, De Lange FJ, et al. Comparison of strain parameters in dysynchronous heart failure between speckle tracking echocardiography vendor systems. Cardiovasc Ultrasound. 2017;15:25.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L. Large-scale video classification with convolutional neural networks. IEEE Conf Comput Vis Pattern Recognit. 2014;2014:1725–32.

  65. Smith LN. Cyclical learning rates for training neural networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) 2017:464–472.

  66. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.

    Google Scholar 

  67. Guyon I. A scaling law for the validation-set training-set size ratio.

  68. Petrov D, Gutman BA, Yu S-H, Alpert K, Zavaliangos-Petropulu A, Isaev D, Turner JA, van Erp TGM, Wang L, Schmaal L, Veltman D, Thompson PM. Machine learning for large-scale quality control of 3d shape models in neuroimaging. Mach Learn Med Imaging. 2017:371–378.

  69. Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, Venugopalan S, Timofeev A, Nelson PQ, Corrado GS. Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442. 2017.

  70. Geras KJ, Wolfson S, Shen Y, Kim S, Moy L, Cho K. High-resolution breast cancer screening with multi-view deep convolutional neural networks. arXiv preprint arXiv:1703.07047. 2017.

  71. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. arXiv preprint arXiv:1708.09843. 2017.

  72. Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A. Practical black-box attacks against machine learning. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 2017:506–519.

  73. Guzman JC, Melin P, Prado-Arechiga G. Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization. Algorithms 2017;10.

  74. Golino HF, Amaral LSB, Duarte SFP, Gomes CMA, Soares TJ, LAd R, et al. Predicting increased blood pressure using machine learning. J Obes. 2014;2014:12.

    Article  Google Scholar 

  75. LaFreniere D, Zulkernine F, Barber D, Martin K. Using machine learning to predict hypertension from a clinical dataset. Computational Intelligence (SSCI), 2016 IEEE Symposium Series on 2016:1–7.

  76. Samant R, Rao S. Evaluation of artificial neural networks in prediction of essential hypertension. Int J Comput Appl. 2013;81:34–8.

    Google Scholar 

  77. Samant R, Srikantha R. Performance of alternate structures of artificial neural networks in prediction of essential hypertension. Int J Adv Technol Eng Res. 2013;10:1–11.

    Google Scholar 

  78. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.

    Article  Google Scholar 

  79. Pyrkov TV, Slipensky K, Barg M, Kondrashin A, Zhurov B, Zenin A, et al. Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep. 2018;8:5210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B, et al. Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J Med Internet Res. 2018;20:e22.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kublanov VS, Dolganov AY, Belo D, Gamboa H. Comparison of machine learning methods for the arterial hypertension diagnostics. Appl Bionics Biomech. 2017;2017:13.

    Article  Google Scholar 

  82. Lamonaca F, Spagnuolo V, De Prisco S, Carnì DL, Grimaldi D. Abstract p365: Blood press evaluation from ppg signal analysis and artificial neural network. Hypertension (Dallas, Tex: 1979). 2017;70:AP365.

    Article  CAS  Google Scholar 

  83. Li X, Wu S, Wang L. Blood pressure prediction via recurrent models with contextual layer. Proceedings of the 26th International Conference on World Wide Web 2017:685–693.

  84. Maxwell A, Li R, Yang B, Weng H, Ou A, Hong H, et al. Deep learning architectures for multi-label classification of intelligent health risk prediction. BMC Bioinformatics. 2017;18:523.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12:e0174944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Held E, Cape J, Tintle N. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data. BMC Proc. 2016;10:141–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Melin P, Pulido M, Miramontes I, Prado-Arechiga G. [pp.08.15] a new artificial intelligence method based on modular neural networks for classification of arterial hypertension. J Hypertens. 2016;34:e164.

    Article  Google Scholar 

  88. Seffens W, Evans C, Minority Health GN, Taylor H. Machine learning data imputation and classification in a multicohort hypertension clinical study. Bioinform Biol Insights. 2015;9:43–54.

    PubMed  Google Scholar 

  89. Kaur R, Kaur A. Hypertension diagnosis using fuzzy expert system.

  90. Lin HC, Lowe A, Al-Jumaily A. Non-invasive blood pressure measurement algorithm using neural networks. Artif Intell Res. 2014;3:16.

    Article  Google Scholar 

  91. Sun J, McNaughton CD, Zhang P, Perer A, Gkoulalas-Divanis A, Denny JC, et al. Predicting changes in hypertension control using electronic health records from a chronic disease management program. J Am Med Inform Assoc: JAMIA. 2014;21:337–44.

    Article  PubMed  Google Scholar 

  92. Wu TH, Pang GK-H, Kwong EW-Y. Predicting systolic blood pressure using machine learning. Information and Automation for Sustainability (ICIAfS), 2014 7th International Conference on. 2014:1–6.

  93. Das S, Ghosh PK, Kar S. Hypertension diagnosis: a comparative study using fuzzy expert system and neuro fuzzy system. Fuzzy Systems (FUZZ), 2013 IEEE International Conference on 2013:1–7.

  94. Srivastava P, Srivastava A, Burande A, Khandelwal A. A note on hypertension classification scheme and soft computing decision making system. ISRN Biomathematics. 2013;2013:11.

    Article  Google Scholar 

  95. Abdullah AA, Zakaria Z, Mohamad NF. Design and development of fuzzy expert system for diagnosis of hypertension. Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second International Conference on 2011:113–117.

  96. Djam X, Kimbi Y. Fuzzy expert system for the management of hypertension.

  97. Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif Intell Med. 2011;53:127–38.

    Article  PubMed  Google Scholar 

  98. Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S. Feature-based neural network approach for oscillometric blood pressure estimation. IEEE Trans Instrum Meas. 2011;60:2786–96.

    Article  CAS  Google Scholar 

  99. Sumathi B, Santhakumaran A. Pre-diagnosis of hypertension using artificial neural network. Global Journal of Computer Science and Technology 2011.

  100. Tejera E, Jose Areias M, Rodrigues A, Ramoa A, Manuel Nieto-Villar J, Rebelo I. Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. J Matern Fetal Neonatal Med. 2011;24:1147–51.

    Article  PubMed  Google Scholar 

  101. Huang S, Xu Y, Yue L, Wei S, Liu L, Gan X, et al. Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a chinese area. Hypertension Res. 2010;33:722–6.

    Article  Google Scholar 

  102. Paffenbarger JRS, Thorne MC, Wing AL. Chronic disease in former college students. Viii. Characteristics in youth predisposing to hypertension in later years. Am J Epidemiol. 1968;88:25–32.

    Article  PubMed  Google Scholar 

  103. Boyer JL, Kasch FW. Exercise therapy in hypertensive men. JAMA. 1970;211:1668–71.

    Article  PubMed  CAS  Google Scholar 

  104. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733–9. https://doi.org/10.1038/nrg2825.

    Article  PubMed  CAS  Google Scholar 

  105. Kivimaki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the Framingham hypertension risk score: results from the Whitehall ii study. Hypertension (Dallas Tex: 1979). 2009;54:496–501.

    Article  CAS  Google Scholar 

  106. Chia YC, Gray SY, Ching SM, Lim HM, Chinna K. Validation of the Framingham general cardiovascular risk score in a multiethnic asian population: a retrospective cohort study. BMJ Open. 2015;5:e007324.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zheng L, Sun Z, Zhang X, Li J, Hu D, Chen J, et al. Predictive value for the rural Chinese population of the Framingham hypertension risk model: results from Liaoning province. Am J Hypertens. 2014;27:409–14.

    Article  PubMed  Google Scholar 

  108. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: the Framingham heart study. Ann Intern Med. 2008;148:102–10.

    Article  PubMed  Google Scholar 

  109. Chia Y-C, Jenkins C, Tang SY. 318 validation of the Framingham general cardiovascular risk prediction score in a multi-ethnic primary care cohort. J Hypertens. 2012;30:e93.

    Article  Google Scholar 

  110. Echouffo-Tcheugui JB, Batty GD, Kivimäki M, Kengne AP. Risk models to predict hypertension: a systematic review. PLoS One. 2013;8:e67370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kanukurthy A, Kemp J. Cs229 project: Building a better risk prediction model for ASCVD.

  112. Unnikrishnan P, Kumar DK. Development of health parameter model for risk prediction of CVD using SVM 2016;2016:3016245.

  113. Zhang B, Wei Z, Ren J, Cheng Y, Zheng Z. An empirical study on predicting blood pressure using classification and regression trees. IEEE Access 2018;PP:1–1.

  114. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121:1092–101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Ng AY. Feature selection, l 1 vs. L 2 regularization, and rotational invariance. Proceedings of the twenty-first international conference on Machine learning 2004:78.

  116. Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning arXiv preprint arXiv: 1712.04621. 2017.

  117. Simon R. New designs for basket clinical trials in oncology. J Biopharm Stat. 2018;28:245–55.

    Article  PubMed  Google Scholar 

  118. Renfro LA, Sargent DJ. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann Oncol. 2017;28:34–43.

    PubMed  CAS  Google Scholar 

  119. Smith LD, Kingsmore SF. N-of-1 genomic medicine for the rare pediatric genetic diseases. Expert Opin Orphan Drugs. 2014;2:1279–90.

    Article  CAS  Google Scholar 

  120. Bain EE, Shafner L, Walling DP, Othman AA, Chuang-Stein C, Hinkle J, et al. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth. 2017;5:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med. 1988;84:739–49.

    Article  PubMed  CAS  Google Scholar 

  122. Eaton SB. An evolutionary perspective on human physical activity: implications for health. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:153–9.

    Article  PubMed  CAS  Google Scholar 

  123. Hinton GF. A parallel computation that assigns canonical object-based frames of reference. Proceedings of the 7th international joint conference on Artificial intelligence-Volume 2. 1981:683–685.

  124. Al-Shedivat M, Bansal T, Burda Y, Sutskever I, Mordatch I, Abbeel P. Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv preprint arXiv:1710.03641. 2017.

  125. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  126. Sun R, Deng Q, Hu I, Zee BC-Y, Wang MH. A clustering approach to identify rare variants associated with hypertension. BMC Proc. 2016;10:153–7.

    PubMed  PubMed Central  Google Scholar 

  127. Ahamad MG, Ahmed MF, Uddin MY. Clustering as data mining technique in risk factors analysis of diabetes, hypertension and obesity. Eur J Eng Res Sci. 2017;1:88–93.

    Google Scholar 

  128. Guo Q, Lu X, Gao Y, Zhang J, Yan B, Su D, et al. Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci Rep. 2017;7:43965.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Monte AA, Vasiliou V, Heard KJ. Omics screening for pharmaceutical efficacy and safety in clinical practice. J Pharm Pharmacoproteomics. 2012;Suppl 5:001.

    Google Scholar 

  130. Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes. 2016;4:28.

    Article  PubMed Central  Google Scholar 

  131. Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15:34–48.

    Article  PubMed  CAS  Google Scholar 

  132. Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension. Circ Res. 2015;116:937–59.

    Article  PubMed  CAS  Google Scholar 

  133. Matafora V, Zagato L, Ferrandi M, Molinari I, Zerbini G, Casamassima N, et al. Quantitative proteomics reveals novel therapeutic and diagnostic markers in hypertension. BBA Clin. 2014;2:79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kuznetsova T, Mischak H, Mullen W, Staessen JA. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012;33:2342–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Pena MJ, Jankowski J, Heinze G, Kohl M, Heinzel A, Bakker SJ, et al. Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes. J Hypertens. 2015;33:2123–32.

    Article  PubMed  CAS  Google Scholar 

  136. Yu B, Pulit SL, Hwang SJ, Brody JA, Amin N, Auer PL, et al. Rare exome sequence variants in clcn6 reduce blood pressure levels and hypertension risk. Circ Cardiovasc Genet. 2016;9:64–70.

    Article  PubMed  CAS  Google Scholar 

  137. Basu M, Sharmin M, Das A, Nair NU, Wang K, Lee JS, et al. Prediction and subtyping of hypertension from pan-tissue transcriptomic and genetic analyses. Genetics. 2017;207:1121–34.

    Article  PubMed  Google Scholar 

  138. Siedlinski M, Nosalski R, Szczepaniak P, Ludwig-Gałęzowska AH, Mikołajczyk T, Filip M, et al. Vascular transcriptome profiling identifies sphingosine kinase 1 as a modulator of angiotensin ii-induced vascular dysfunction. Sci Rep. 2017;7:44131.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Delles C, Schiffer E, von Zur Muhlen C, Peter K, Rossing P, Parving HH, et al. Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J Hypertens. 2010;28:2316–22.

    Article  PubMed  CAS  Google Scholar 

  140. Rotroff DM, Shahin MH, Gurley SB, Zhu H, Motsinger-Reif A, Meisner M, et al. Pharmacometabolomic assessments of atenolol and hydrochlorothiazide treatment reveal novel drug response phenotypes. CPT: Pharmacometrics Syst Pharmacol. 2015;4:669–79.

    CAS  Google Scholar 

  141. Mead CN. Data interchange standards in healthcare IT—computable semantic interoperability: now possible but still difficult, do we really need a better mousetrap? J Healthc Inf Manag: JHIM. 2006;20:71–8.

    PubMed  Google Scholar 

  142. Balthazar P, Harri P, Prater A, Safdar NM. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol: JACR. 2018;15:580–6.

    Article  PubMed  Google Scholar 

  143. Lin Y-P, Petway RJ, Lien W-Y, Settele J. Blockchain with artificial intelligence to efficiently manage water use under climate change. Environments. 2018;5

  144. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  145. Geurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree-based methods in computational and systems biology. Mol BioSyst. 2009;5:1593–605.

    Article  PubMed  CAS  Google Scholar 

  146. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994;5:157–66.

    Article  PubMed  CAS  Google Scholar 

  147. Petrov EN, Kononova AI, Kapitanova II, Kondrashov OO, Lisov OI. Practical efficiency evaluation method for bibliographical data classification. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 2018:1553–1556.

  148. Koh PW, Liang P. Understanding black-box predictions via influence functions arXiv preprint arXiv:1703.04730. 2017.

  149. Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A. Adversarial examples for semantic segmentation and object detection.

  150. Messerli FH BS, Messerli AW. Age, blood press targets and guidelines—a rift between those who preach, those who teach and those who treat? Circulation, in press 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayakrit Krittanawong.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention of Hypertension: Public Health Challenges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krittanawong, C., Bomback, A.S., Baber, U. et al. Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension. Curr Hypertens Rep 20, 75 (2018). https://doi.org/10.1007/s11906-018-0875-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0875-x

Keywords

Navigation