Skip to main content
Log in

Arterial Stiffness in Hypertension: an Update

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To update and review novel insights into the mechanisms, measurements, and therapeutic approaches to arterial stiffness.

Recent Findings

Arterial (e.g., vascular) stiffness has been shown over time to prognosticate for cardiovascular and kidney outcomes. In this context, there has been increased interest behind the mechanisms that drive arterial stiffness beyond aging and interest in how to apply newer technologies in measurement of arterial stiffness. Pulse wave velocity has been the gold standard for measurement but industry has been innovating to improve measurement with use of single-point PWV as well as pharmacologic approaches with anti-hypertensives and oral hypoglycemic agents. Emerging data on the role of the mineralocorticoid receptor, the endothelial sodium channel (EnNaC), and uric acid in arterial stiffness are promising a number of potential therapies.

Summary

Newer techniques of measuring PWV for arterial stiffness and novel therapies may soon lead to better outcomes from hypertension complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. •• Safar ME. Arterial stiffness as a risk factor for clinical hypertension. Nat Rev Cardiol. 2018;15(2):97–105. This paper provides a concise update on the importance of arterial stiffness as a risk factor in hypertensive patients.

    Article  PubMed  Google Scholar 

  2. Smulyan H, Lieber A, Safar ME. Hypertension, diabetes type II, and their association: role of arterial stiffness. Am J Hypertens. 2016;29(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  3. Niiranen TJ, Kalesan B, Hamburg NM, Benjamin EJ, Mitchell GF, Vasan RS. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the Framingham Heart tudy. J Am Heart Assoc. 2016;5(11):e004271.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific Statement from the American Heart Association. Hypertension. 2015;66(3):698–722.

    Article  PubMed  CAS  Google Scholar 

  5. Reference Values for Arterial Stiffness C. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31(19):2338–50.

    Article  Google Scholar 

  6. Laurent P, Marenco P, Castagna O, Smulyan H, Blacher J, Safar ME. Differences in central systolic blood pressure and aortic stiffness between aerobically trained and sedentary individuals. J Am Soc Hypertens. 2011;5(2):85–93.

    Article  PubMed  Google Scholar 

  7. Tanaka H, Safar ME. Influence of lifestyle modification on arterial stiffness and wave reflections. Am J Hypertens. 2005;18(1):137–44.

    Article  PubMed  Google Scholar 

  8. Briet M, Schiffrin EL. Treatment of arterial remodeling in essential hypertension. Curr Hypertens Rep. 2013;15(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  9. Padilla J, Ramirez-Perez FI, Habibi J, Bostick B, Aroor AR, Hayden MR, et al. Regular exercise reduces endothelial cortical stiffness in western diet-fed female mice. Hypertension. 2016;68(5):1236–44.

    Article  PubMed  CAS  Google Scholar 

  10. •• Avolio AP, Butlin M, Walsh A. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment. Physiol Meas. 2010;31(1):R1–47. This is a very insightful review of the history of arterial waveform measurements in blood pressure and arterial stiffness.

    Article  PubMed  Google Scholar 

  11. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70(11):793–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Lewis O. Stephen Hales and the measurement of blood pressure. J Hum Hypertens. 1994;8(12):865–71.

    PubMed  CAS  Google Scholar 

  13. Wilkinson IB, MacCallum H, Hupperetz PC, van Thoor CJ, Cockcroft JR, Webb DJ. Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol. 2001;530(Pt 3):541–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. O’Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol. 2001;51(6):507–22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esper SA, Pinsky MR. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol. 2014;28(4):363–80.

    Article  PubMed  Google Scholar 

  16. Boutouyrie P, Fliser D, Goldsmith D, Covic A, Wiecek A, Ortiz A, et al. Assessment of arterial stiffness for clinical and epidemiological studies: methodological considerations for validation and entry into the European Renal and Cardiovascular Medicine registry. Nephrol Dial Transplant. 2014;29(2):232–9.

    Article  PubMed  Google Scholar 

  17. Obeid H, Khettab H, Marais L, Hallab M, Laurent S, Boutouyrie P. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation. J Hypertens. 2017;35(8):1618–25.

    Article  PubMed  CAS  Google Scholar 

  18. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–8.

    Article  PubMed  CAS  Google Scholar 

  19. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60(2):534–41.

    Article  PubMed  CAS  Google Scholar 

  20. Hajjar I, Goldstein FC, Martin GS, Quyyumi AA. Roles of arterial stiffness and blood pressure in hypertension-associated cognitive decline in healthy adults. Hypertension. 2016;67(1):171–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ferruzzi J, Madziva D, Caulk AW, Tellides G, Humphrey JD. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech Model Mechanobiol. 2018. https://doi.org/10.1007/s10237-018-1026-7.

  22. •• Teren A, Beutner F, Wirkner K, Loffler M, Scholz M. Relationship between determinants of arterial stiffness assessed by diastolic and suprasystolic pulse oscillometry: comparison of Vicorder and Vascular Explorer. Medicine (Baltimore). 2016;95(10):e2963. This paper reviews the use of PWV for the measurement of arterial stiffness while providing a comparison of different oscillometric modalities that can be used to assess it

    Article  Google Scholar 

  23. Lyle AN, Raaz U. Killing me unsoftly: causes and mechanisms of arterial stiffness. Arterioscler Thromb Vasc Biol. 2017;37(2):e1–e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. •• DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364–76. A paper that explores the complex links between obesity, hypertension and vascular dysfunction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. •• Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med Clin N Am. 2017;101(1):129–37. This provides an update on the most recent literature on the pathophysiology of insulin resistance, obesity, and renin angiotensin aldosterone system-mediated oxidative stress on endothelial dysfunction and the pathogenesis of hypertension.

    Article  PubMed  Google Scholar 

  26. •• Aroor AR, Demarco VG, Jia G, Sun Z, Nistala R, Meininger GA, et al. The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol. 2013;4:161. This is a careful analysis of the interaction between angiotensin and aldosterone shows the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction, and arterial stiffness.

    Article  Google Scholar 

  27. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57(3):469–76.

    Article  PubMed  CAS  Google Scholar 

  28. Benetos A, Safar ME. Aortic collagen, aortic stiffness, and AT1 receptors in experimental and human hypertension. Can J Physiol Pharmacol. 1996;74(7):862–6.

    Article  PubMed  CAS  Google Scholar 

  29. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal. 2013;19(10):1110–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hamlyn JM, Linde CI, Gao J, Huang BS, Golovina VA, Blaustein MP, et al. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: a new axis in long term blood pressure control. PLoS One. 2014;9(9):e108916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tirosh A, Garg R, Adler GK. Mineralocorticoid receptor antagonists and the metabolic syndrome. Curr Hypertens Rep. 2010;12(4):252–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McCurley A, McGraw A, Pruthi D, Jaffe IZ. Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Arch. 2013;465(12):1661–70.

    Article  PubMed  CAS  Google Scholar 

  34. •• DeMarco VG, Habibi J, Jia G, Aroor AR, Ramirez-Perez FI, Martinez-Lemus LA, et al. Low-dose mineralocorticoid receptor blockade prevents Western diet-induced arterial stiffening in female mice. Hypertension. 2015;66(1):99–107. https://doi.org/10.1161/HYPERTENSIONAHA.115.05674. Epub 2015 May 26. This paper explores the activation of vascular mineralocorticoid receptors in Western Diet fed mice and how the use of subpressor doses of spironolactone preserved normal arterial stiffness.

  35. •• Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, DeMarco VG, Ramirez-Perez FI, et al. Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ Res. 2016;118(6):935–43. This paper shows how increased endothelial cell mineralocorticoid receptors (ECMR) signaling associated with consumption of a Western Diet plays a key role in endothelial sodium channel activation and resultant arterial stiffness in female mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Martinez-Lemus LA, Aroor AR, Ramirez-Perez FI, Jia G, Habibi J, DeMarco VG, et al. Amiloride improved endothelial function and reduces vascular stiffness in female mice fed a Western diet. Front Physiol. 2017;8:456. https://doi.org/10.3389/fphys.2017.00456. eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol. 2015;6:231.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brillante DG, O’Sullivan AJ, Howes LG. Arterial stiffness in insulin resistance: the role of nitric oxide and angiotensin II receptors. Vasc Health Risk Manag. 2009;5(1):73–8.

    PubMed  PubMed Central  Google Scholar 

  39. • Canepa M, Viazzi F, Strait JB, Ameri P, Pontremoli R, Brunelli C, et al. Longitudinal association between serum uric acid and arterial stiffness: results from the Baltimore Longitudinal Study of Aging. Hypertension. 2017;69(2):228–35. This study demonstrates the clinical relevance of raised serum uric acid levels as a risk factor in arterial stiffness and hypertension.

    Article  PubMed  CAS  Google Scholar 

  40. Mehta T, Nuccio E, McFann K, Madero M, Sarnak MJ, Jalal D. Association of uric acid with vascular stiffness in the Framingham Heart Study. Am J Hypertens. 2015;28(7):877–83.

    Article  PubMed  CAS  Google Scholar 

  41. Aroor AR, Jia G, Habibi J, Sun Z, Ramirez-Perez FI, Brady B, et al. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metabolism. 2017;74:32–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. de Faria AP, Modolo R, Fontana V, Moreno H. Adipokines: novel players in resistant hypertension. J Clin Hypertens (Greenwich). 2014;16(10):754–9. https://doi.org/10.1111/jch.12399.

    Article  CAS  Google Scholar 

  43. •• Sabbatini AR, Fontana V, Laurent S, Moreno H. An update on the role of adipokines in arterial stiffness and hypertension. J Hypertens. 2015;33(3):435–44. A paper reviewing the proposed mechanisms by which various adipokines contribute to arterial stiffness.

    Article  PubMed  CAS  Google Scholar 

  44. Achari AE, Jain SK. Adiponectin: a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061321

  45. Yiannikouris F, Gupte M, Putnam K, Cassis L. Adipokines and blood pressure control. Curr Opin Nephrol Hypertens. 2010;19(2):195–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Su H, Lau WB, Ma XL. Hypoadiponectinaemia in diabetes mellitus type 2: molecular mechanisms and clinical significance. Clin Exp Pharmacol Physiol. 2011;38(12):897–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P, Bazi Z. Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag. 2015;11:55–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. El Khoudary SR, Barinas-Mitchell E, White J, Sutton-Tyrrell K, Kuller LH, Curb JD, et al. Adiponectin, systolic blood pressure, and alcohol consumption are associated with more aortic stiffness progression among apparently healthy men. Atherosclerosis. 2012;225(2):475–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kim CS, Bae EH, Ma SK, Park SK, Lee JY, Chung W, et al. Association of serum adiponectin concentration with aortic arterial stiffness in chronic kidney disease: from the KNOW-CKD study. Clin Exp Nephrol. 2017;21(4):608–16.

    Article  PubMed  CAS  Google Scholar 

  50. Soderberg S, Colquhoun D, Keech A, Yallop J, Barnes EH, Pollicino C, et al. Leptin, but not adiponectin, is a predictor of recurrent cardiovascular events in men: results from the LIPID study. Int J Obes. 2009;33(1):123–30.

    Article  CAS  Google Scholar 

  51. Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, et al. Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin-angiotensin system and inflammation. Hypertension. 2016;67(5):970–6.

    Article  PubMed  CAS  Google Scholar 

  52. Noblet JN, Goodwill AG, Sassoon DJ, Kiel AM, Tune JD. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Res Cardiol. 2016;111(3):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jung HS, Park KH, Cho YM, Chung SS, Cho HJ, Cho SY, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res. 2006;69(1):76–85.

    Article  PubMed  CAS  Google Scholar 

  55. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    Article  PubMed  CAS  Google Scholar 

  56. Barbaro NR, Fontana V, Modolo R, De Faria AP, Sabbatini AR, Fonseca FH, et al. Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press. 2015;24(1):7–13. https://doi.org/10.3109/08037051.2014.940710.

    Article  PubMed  CAS  Google Scholar 

  57. Mozos I, Malainer C, Horbanczuk J, Gug C, Stoian D, Luca CT, et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol. 2017;8:1058.

    Article  PubMed  PubMed Central  Google Scholar 

  58. • Tomiyama H, Shiina K, Matsumoto-Nakano C, Ninomiya T, Komatsu S, Kimura K, et al. The contribution of inflammation to the development of hypertension mediated by increased arterial stiffness. J Am Heart Assoc. 2017;6(7):e005729. https://doi.org/10.1161/JAHA.117.005729. This paper presents results of a study conducted in Japan suggesting that long-term inflammation may be associated with increased vascular stiffness.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Pikilidou M, Yavropoulou M, Antoniou M, Yovos J. The contribution of osteoprogenitor cells to arterial stiffness and hypertension. J Vasc Res. 2015;52(1):32–40. https://doi.org/10.1159/000381098. This paper looks at how circulating stem cells—Osteoprogenitor cells—can deposit bone matrix proteins in the vascular wall and contribute to arterial stiffness.

    Article  PubMed  CAS  Google Scholar 

  60. Aoki A, Kojima F, Uchida K, Tanaka Y, Nitta K. Associations between vascular calcification, arterial stiffness and bone mineral density in chronic hemodialysis patients. Geriatr Gerontol Int. 2009;9(3):246–52.

    Article  PubMed  Google Scholar 

  61. David M, Malti O, AlGhatrif M, Wright J, Canepa M, Strait JB. Pulse wave velocity testing in the Baltimore longitudinal study of aging. J Vis Exp. 2014;7(84):e50817. https://doi.org/10.3791/50817.

  62. Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–8. https://doi.org/10.1097/HJH.0b013e3282f314f7.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang Y, Agnoletti D, Xu Y, Wang JG, Blacher J, Safar ME. Carotid-femoral pulse wave velocity in the elderly. J Hypertens. 2014;32:1572–6.

    Article  PubMed  CAS  Google Scholar 

  64. Butlin M, Qasem A, Battista F, Bozec E, McEniery CM, Millet-Amaury E, et al. Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: comparison with tonometric measurement. J Hypertens. 2013;31:2237–43.

    Article  PubMed  CAS  Google Scholar 

  65. P M N, Joseph J, Sivaprakasam M. A magnetic plethysmograph probe for local pulse wave velocity measurement. IEEE Trans Biomed Circuits Syst. 2017;11(5):1065–76.

    Article  PubMed  Google Scholar 

  66. •• Campo D, Khettab H, Yu R, Genain N, Edouard P, Buard N, et al. Novel Arterial Stiffness measurement methods- Measurement of aortic pulse wave velocity with a connected bathroom scale. Am J Hypertens. 2017. https://doi.org/10.1093/ajh/hpx059. This paper shows one of the innovative steps being taken to make PWV measurement more assessible using a bathroom scale.

  67. Maroules CD, Khera A, Ayers C, Goel A, Peshock RM, Abbara S, et al. Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson. 2014;16:33.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Skrzypczyk P, Pańczyk-Tomaszewska M. Methods to evaluate arterial structure and function in children—state-of-the art knowledge. Adv Med Sci. 2017;62(2):280–294. https://doi.org/10.1016/j.advms.2017.03.001. Epub 2017 May 11.

  69. Yang T, Jiang X, Zhong Y, Zhao X, Lin S, Li J, et al. A wearable and highly sensitive Graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2017;2(7):967–974. https://doi.org/10.1021/acssensors.7b00230. Epub 2017 Jul 13.

  70. •• Saiki A, Sato Y, Watanabe R, Watanabe Y, Imamura H, Yamaguchi T, et al. The role of a novel arterial stiffness parameter, cardio-ankle vascular index (CAVI), as a surrogate marker for cardiovascular diseases. J Atheroscler Thromb. 2016;23(2):155–68. https://doi.org/10.5551/jat.32797. This paper looks at the use of a new parameter, the cardio-ankle vascular index (CAVI), for the measurement of arterial stiffness, in order to overcome some of the drawbacks of the PWV.

    Article  PubMed  Google Scholar 

  71. O’Donovan C, Lithander FE, Raftery T, Gormley J, Mahmud A, Hussey J. Inverse relationship between physical activity and arterial stiffness in adults with hypertension. J Phys Act Health. 2014;11(2):272–7. https://doi.org/10.1123/jpah.2012-0075.

    Article  PubMed  Google Scholar 

  72. Tahara N, Yamagishi SI, Bekki M, Kodama N, Nakamura T, Sugiyama Y, et al. Anagliptin, a dipeptidyl peptidase-4 inhibitor ameliorates arterial stiffness in association with reduction of remnant-like particle cholesterol and alanine transaminase levels in type 2 diabetic patients. Curr Vasc Pharmacol. 2016;14(6):552–62.

    Article  PubMed  CAS  Google Scholar 

  73. de Boer SA, Heerspink HJL, Juarez Orozco LE, van Roon AM, Kamphuisen PW, Smit AJ, et al. Effect of linagliptin on pulse wave velocity in early type 2 diabetes: a randomized, double-blind, controlled 26-week trial (RELEASE). Diabetes Obes Metab. 2017;19(8):1147–54.

    Article  PubMed  CAS  Google Scholar 

  74. Duvnjak L, Blaslov K. Dipeptidyl peptidase-4 inhibitors improve arterial stiffness, blood pressure, lipid profile and inflammation parameters in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2016;8:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. •• Tahara N, Yamagish SI, Bekki M, Tahara A, Igata S, Honda A, et al. Switching dipeptidyl peptidase-4 inhibitors to tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2 improves arterial stiffness evaluated by cardio-ankle vascular index in patients with type 2 diabetes. Curr Vasc Pharmacol. 2018. https://doi.org/10.2174/1570161116666180515154555. This study showed that a switch from a dipeptidyl peptidase-4 inhibitors DPP-4 to an sodium-glucose cotransporter 2 SGLT2 significantly reduced arterial stiffness in type 2 diabetes mellitus.

  76. Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has received financial support by a VA Merit to Adam Whaley-Connell and a Dialysis Clinics Inc, research grant to Ravi Nistala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korshie Dumor.

Ethics declarations

Conflict of Interest

Dr. Shoemaker-Moyle reports grants from Dialysis Clinics Inc. and from Veterans Administration, during the conduct of the study. Dr. Nistala reports grants from Dialysis Clinics Inc. during the conduct of the study. The other authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumor, K., Shoemaker-Moyle, M., Nistala, R. et al. Arterial Stiffness in Hypertension: an Update. Curr Hypertens Rep 20, 72 (2018). https://doi.org/10.1007/s11906-018-0867-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0867-x

Keywords

Navigation