Skip to main content
Log in

Obstructive Sleep Apnea-Induced Hypertension: Role of the Gut Microbiota

  • Gut Microbiome, Sympathetic Nervous System, and Hypertension (MK Raizada and EM Richards, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obstructive sleep apnea (OSA) is a significant risk factor for systemic hypertension and other cardiovascular diseases. While this relationship has been firmly established, a detailed understanding of how OSA leads to hypertension is lacking. This review will examine the emerging idea that the gut microbiota plays a role in the development of hypertension, including that associated with OSA.

Recent Findings

Disruption of the normal composition of the gut microbiota, termed dysbiosis, has been identified in a number of metabolic and cardiovascular diseases, including diabetes, obesity, and atherosclerosis. Recently, a number of studies have demonstrated gut dysbiosis in various animal models of hypertension as well as in hypertensive patients. Evidence is now emerging that gut dysbiosis plays a causal role in the development of OSA-induced hypertension.

Summary

In this review, we will examine the evidence that gut dysbiosis plays a role in OSA-induced hypertension. We will discuss potential mechanisms linking OSA to gut dysbiosis, examine how gut dysbiosis may be linked to hypertension, and highlight how this understanding may be utilized for the development of future therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, Lorenzi-Filho G. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105:1135–9. doi:10.1016/j.amjcard.2009.12.017.

    Article  PubMed  Google Scholar 

  2. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T, American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, American Heart Association Stroke Council, American Heart Association Council on Cardiovascular Nursing, American College of Cardiology Foundation. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on sleep disorders research (National Institutes of Health). Circulation. 2008;118:1080–111. doi:10.1161/CIRCULATIONAHA.107.189375.

    Article  PubMed  Google Scholar 

  3. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, Malhotra A, Martinez-Garcia MA, Mehra R, Pack AI, Polotsky VY, Redline S, Somers VK. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69:841–58.

    Article  PubMed  Google Scholar 

  4. Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112. doi:10.1152/physrev.00043.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Durgan DJ, Bryan Jr RM. Cerebrovascular consequences of obstructive sleep apnea. J Am Heart Assoc. 2012;1:e000091. doi:10.1161/JAHA.111.000091.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lavie P. Restless nights: understanding snoring and sleep apnea. New Haven: Yale University Press; 2003.

    Google Scholar 

  7. Dickens C. The Pickwick papers. New York; 1868.

  8. Gastaut H, Tassinari CA, Duron B. Polygraphic study of the episodic diurnal and nocturnal (hypnic and respiratory) manifestations of the Pickwick syndrome. Brain Res. 1966;1:167–86.

    Article  CAS  PubMed  Google Scholar 

  9. Gastaut H, Duron B, Papy JJ, Tassinari C, Waltregny A. Comparative polygraphic study of the 24 hour cycle in Pickwickians, the obese and narcoleptics. Electroencephalogr Clin Neurophysiol. 1967;23:284.

    CAS  PubMed  Google Scholar 

  10. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5. doi:10.1056/NEJM199304293281704.

    Article  CAS  PubMed  Google Scholar 

  11. Kapur V, Strohl KP, Redline S, Iber C, O'Connor G, Nieto J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath. 2002;6:49–54. doi:10.1007/s11325-002-0049-5.

    Article  PubMed  Google Scholar 

  12. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97:943–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126:1495–510. doi:10.1161/CIRCULATIONAHA.111.070813.

    Article  PubMed  Google Scholar 

  14. Floras JS, Bradley TD. Treating obstructive sleep apnea: is there more to the story than 2 millimeters of mercury? Hypertension. 2007;50:289–91.

    Article  CAS  PubMed  Google Scholar 

  15. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32:1039–43.

    Article  CAS  PubMed  Google Scholar 

  16. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904. doi:10.1172/JCI118235S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katragadda S, Xie A, Puleo D, Skatrud JB, Morgan BJ. Neural mechanism of the pressor response to obstructive and nonobstructive apnea. J Appl Physiol (1985). 1997;83:2048–54.

    CAS  Google Scholar 

  18. Parati G, Lombardi C, Castagna F, Mattaliano P, Filardi PP, Agostoni P. Italian Society of Cardiology (SIC) Working Group on Heart Failure members. Heart failure and sleep disorders. Nat Rev Cardiol. 2016;13:389–403. doi:10.1038/nrcardio.2016.71.

    Article  CAS  PubMed  Google Scholar 

  19. Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1671–83. doi:10.1152/ajpregu.00400.2007.

    Article  CAS  PubMed  Google Scholar 

  20. Reutrakul S, Thakkinstian A, Anothaisintawee T, Chontong S, Borel AL, Perfect MM, Janovsky CC, Kessler R, Schultes B, Harsch IA, van Dijk M, Bouhassira D, Matejko B, Lipton RB, Suwannalai P, Chirakalwasan N, Schober AK, Knutson KL. Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep Med. 2016;23:26–45.

    Article  PubMed  Google Scholar 

  21. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, Jones DW, Materson BJ, Oparil S, Wright Jr JT, Roccella EJ, National Heart, Lung, and Blood Institute, National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52. doi:10.1161/01.HYP.0000107251.49515.c2.

    Article  CAS  PubMed  Google Scholar 

  22. Fatureto-Borges F, Lorenzi-Filho G, Drager LF. Effectiveness of continuous positive airway pressure in lowering blood pressure in patients with obstructive sleep apnea: a critical review of the literature. Integr Blood Press Control. 2016;9:43–7. doi:10.2147/IBPC.S70402.

    PubMed  PubMed Central  Google Scholar 

  23. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, Amodeo C, Bortolotto LA, Krieger EM, Bradley TD, Lorenzi-Filho G. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58:811–7. doi:10.1161/HYPERTENSIONAHA.111.179788.

    Article  CAS  PubMed  Google Scholar 

  24. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, Leung RS, Bradley TD. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19:2271–7.

    Article  CAS  PubMed  Google Scholar 

  25. Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ. 2009;108:246–9.

    PubMed  PubMed Central  Google Scholar 

  26. Young T, Peppard P, Palta M, Hla KM, Finn L, Morgan B, Skatrud J. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157:1746–52.

    Article  CAS  PubMed  Google Scholar 

  27. Hla KM, Young TB, Bidwell T, Palta M, Skatrud JB, Dempsey J. Sleep apnea and hypertension. A population-based study. Ann Intern Med. 1994;120:382–8.

    Article  CAS  PubMed  Google Scholar 

  28. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.

    Article  CAS  PubMed  Google Scholar 

  29. Kohler M, Smith D, Tippett V, Stradling JR. Predictors of long-term compliance with continuous positive airway pressure. Thorax. 2010;65:829–32. doi:10.1136/thx.2010.135848.

    Article  PubMed  Google Scholar 

  30. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, Chen G, Du B, McArdle N, Mukherjee S, Tripathi M, Billot L, Li Q, Lorenzi-Filho G, Barbe F, Redline S, Wang J, Arima H, Neal B, White DP, Grunstein RR, Zhong N, Anderson CS. SAVE investigators and coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–31. doi:10.1056/NEJMoa1606599.

    Article  PubMed  Google Scholar 

  31. Dematteis M, Godin-Ribuot D, Arnaud C, Ribuot C, Stanke-Labesque F, Pepin JL, Levy P. Cardiovascular consequences of sleep-disordered breathing: contribution of animal models to understanding the human disease. ILAR J. 2009;50:262–81.

    Article  CAS  PubMed  Google Scholar 

  32. Farre R, Montserrat JM, Navajas D. Morbidity due to obstructive sleep apnea: insights from animal models. Curr Opin Pulm Med. 2008;14:530–6.

    Article  PubMed  Google Scholar 

  33. Fletcher EC, Brown DL. Nocturnal oxyhemoglobin desaturation following tracheostomy for obstructive sleep apnea. Am J Med. 1985;79:35–42.

    Article  CAS  PubMed  Google Scholar 

  34. Fletcher EC, Lesske J, Culman J, Miller CC, Unger T. Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension. 1992;20:612–9.

    Article  CAS  PubMed  Google Scholar 

  35. Allahdadi KJ, Walker BR, Kanagy NL. Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension. 2005;45:705–9.

    Article  CAS  PubMed  Google Scholar 

  36. Bosc LV, Resta T, Walker B, Kanagy NL. Mechanisms of intermittent hypoxia induced hypertension. J Cell Mol Med. 2010;14:3–17. doi:10.1111/j.1582-4934.2009.00929.x.

    Article  PubMed  Google Scholar 

  37. Kanagy NL, Walker BR, Nelin LD. Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension. 2001;37:511–5.

    Article  CAS  PubMed  Google Scholar 

  38. Dematteis M, Julien C, Guillermet C, Sturm N, Lantuejoul S, Mallaret M, Levy P, Gozal E. Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med. 2008;177:227–35.

    Article  PubMed  Google Scholar 

  39. Neubauer JA. Invited review: Physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol (1985). 2001;90:1593–9.

    CAS  Google Scholar 

  40. Crossland RF, Durgan DJ, Lloyd EE, Phillips SC, Reddy AK, Marrelli SP, Bryan Jr RM. A new rodent model for obstructive sleep apnea: effects on ATP-mediated dilations in cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2013;305:R334–42. doi:10.1152/ajpregu.00244.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Durgan DJ, Crossland RF, Lloyd EE, Phillips SC, Bryan RM. Increased cerebrovascular sensitivity to endothelin-1 in a rat model of obstructive sleep apnea: a role for endothelin receptor B. J Cereb Blood Flow Metab. 2015;35:402–11. doi:10.1038/jcbfm.2014.214.

    Article  CAS  PubMed  Google Scholar 

  42. Drager LF, Jun JC, Polotsky VY. Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab. 2010;24:843–51. doi:10.1016/j.beem.2010.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pack AI, Gislason T. Obstructive sleep apnea and cardiovascular disease: a perspective and future directions. Prog Cardiovasc Dis. 2009;51:434–51. doi:10.1016/j.pcad.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  44. Baguet JP, Hammer L, Levy P, Pierre H, Launois S, Mallion JM, Pepin JL. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence. Chest. 2005;128:3407–12.

    Article  PubMed  Google Scholar 

  45. •• Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, Hollister EB, Bryan Jr RM. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016;67:469–74. doi:10.1161/HYPERTENSIONAHA.115.06672. This article demonstrated that dysbiosis induced by HFD and OSA contributed to hypertension in a rat model of OSA. Microbiota transplanted from OSA-induced hypertensive rats was capable of inducing hypertension in normotensive rats.

    CAS  PubMed  Google Scholar 

  46. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47:187–97. doi:10.1152/physiolgenomics.00136.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. • Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine CJ, Raizada MK, Mohamadzadeh M. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40. doi:10.1161/HYPERTENSIONAHA.115.05315. This article demonstrated gut dysbiosis in both rats and hypertensive patients. Dysbiosis was characterized by an increased F:B ratio and loss of SCFA-producing bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-gut-bone marrow axis: implications for hypertension and related therapeutics. Circ Res. 2016;118:1327–36. doi:10.1161/CIRCRESAHA.116.307709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. •• Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole-Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia-Pereira F, Johnson RD, Pepine CJ, Raizada MK. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312–23. doi:10.1161/CIRCRESAHA.116.309006. This article demonstrated dysbiosis as well as gut pathology in SHR and AngII rat models of hypertension. Studies suggest dysfunctional sympathetic-gut communication is involved in gut pathology, dysbiosis, inflammation, and hypertension.

    Article  CAS  PubMed  Google Scholar 

  50. • Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. doi:10.1186/s40168-016-0222-x. This study demonstrated significant differences in the gut microbiota, microbiota metagenome, and plasma metabolites of prehypertensive and hypertensive patients, as compared to controls.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330:1768–73. doi:10.1126/science.1195568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health. Nutrients. 2014;6:5786–805.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204–11. doi:10.1172/JCI72331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, Lusis AJ, Hazen SL. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647–60. doi:10.1074/jbc.M114.618249.

    Article  CAS  PubMed  Google Scholar 

  56. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, Org E, Wu Y, Li L, Smith JD, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20:799–812. doi:10.1016/j.cmet.2014.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83. doi:10.1016/j.bpg.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  58. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22:516–23. doi:10.1038/nm.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci. 2016;36:7428–40. doi:10.1523/JNEUROSCI.1114-16.2016.

    Article  CAS  PubMed  Google Scholar 

  60. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB, INDIA-FBP group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8.

    Article  CAS  PubMed  Google Scholar 

  61. Brown JM, Hazen SL. Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol. 2014;25:48–53. doi:10.1097/MOL.0000000000000036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17:1519–28. doi:10.3748/wjg.v17.i12.1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4:4. doi:10.1186/1868-7083-4-4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76. doi:10.3390/nu3100858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 2012;108:820–31. doi:10.1017/S0007114512001948.

    Article  CAS  PubMed  Google Scholar 

  66. • Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan Jr RM, Durgan DJ. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2016; doi:10.1152/physiolgenomics.00081.2016. This article demonstrated dysbiosis in the SHRSP model. In addition, the hypertensive phenotype could be transferred to normotensive rats by microbiota transplantation.

    PubMed  Google Scholar 

  67. Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, Schuler R, Finger S, Knorr M, Lagrange J, Brandt M, Waisman A, Kossmann S, Schafer K, Munzel T, Reinhardt C, Wenzel P. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5 doi:10.1161/JAHA.116.003698.

  68. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife. 2013;2:e01202. doi:10.7554/eLife.01202.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kohn FR, Kung AH. Role of endotoxin in acute inflammation induced by gram-negative bacteria: specific inhibition of lipopolysaccharide-mediated responses with an amino-terminal fragment of bactericidal/permeability-increasing protein. Infect Immun. 1995;63:333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreno-Indias I, Torres M, Montserrat JM, Sanchez-Alcoholado L, Cardona F, Tinahones FJ, Gozal D, Poroyko VA, Navajas D, Queipo-Ortuno MI, Farre R. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J. 2015;45:1055–65. doi:10.1183/09031936.00184314.

    Article  PubMed  Google Scholar 

  71. Moreno-Indias I, Torres M, Sanchez-Alcoholado L, Cardona F, Almendros I, Gozal D, Montserrat JM, Queipo-Ortuno MI, Farre R. Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice. Sleep. 2016;39:1891–7. doi:10.5665/sleep.6176.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu J, Sun X, Wu Q, Li H, Li L, Feng J, Zhang S, Xu L, Li K, Li X, Wang X, Chen H. Disrupted intestinal structure in a rat model of intermittent hypoxia. Mol Med Rep. 2016;13:4407–13. doi:10.3892/mmr.2016.5068.

    CAS  PubMed  Google Scholar 

  73. Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, Almendros I, Gileles-Hillel A, Qiao Z, Hubert N, Farre R, Chang EB, Gozal D. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405. doi:10.1038/srep35405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2016; doi:10.1002/jcp.25518.

    Google Scholar 

  75. Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res. 2011;343:23–32. doi:10.1007/s00441-010-1050-0.

    Article  CAS  PubMed  Google Scholar 

  76. Bhatia V, Tandon RK. Stress and the gastrointestinal tract. J Gastroenterol Hepatol. 2005;20:332–9.

    Article  PubMed  Google Scholar 

  77. Lyte M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 2014;5:381–9. doi:10.4161/gmic.28682.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mackos AR, Varaljay VA, Maltz R, Gur TL, Bailey MT. Role of the intestinal microbiota in host responses to stressor exposure. Int Rev Neurobiol. 2016;131:1–19.

    Article  CAS  PubMed  Google Scholar 

  79. Pluznick JL, Zou DJ, Zhang X, Yan Q, Rodriguez-Gil DJ, Eisner C, Wells E, Greer CA, Wang T, Firestein S, Schnermann J, Caplan MJ. Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A. 2009;106:2059–64. doi:10.1073/pnas.0812859106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One. 2014;9:e111053. doi:10.1371/journal.pone.0111053.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiol Genomics. 2016; doi:10.1152/physiolgenomics.00089.2016.

    PubMed Central  Google Scholar 

  82. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110:4410–5. doi:10.1073/pnas.1215927110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schiffrin EL. The immune system: role in hypertension. Can J Cardiol. 2013;29:543–8. doi:10.1016/j.cjca.2012.06.009.

    Article  PubMed  Google Scholar 

  84. Singh MV, Chapleau MW, Harwani SC, Abboud FM. The immune system and hypertension. Immunol Res. 2014;59:243–53. doi:10.1007/s12026-014-8548-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh MV, Abboud FM. Toll-like receptors and hypertension. Am J Physiol Regul Integr Comp Physiol. 2014;307:R501–4. doi:10.1152/ajpregu.00194.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40. doi:10.1161/HYPERTENSIONAHA.110.163576.

    Article  CAS  PubMed  Google Scholar 

  87. Nobili V, Alisi A, Cutrera R, Carpino G, De Stefanis C, D'Oria V, De Vito R, Cucchiara S, Gaudio E, Musso G. Altered gut-liver axis and hepatic adiponectin expression in OSAS: novel mediators of liver injury in paediatric non-alcoholic fatty liver. Thorax. 2015;70:769–81. doi:10.1136/thoraxjnl-2015-206782.

    Article  PubMed  Google Scholar 

  88. Aron-Wisnewsky J, Clement K, Pepin JL. Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism. 2016;65:1124–35. doi:10.1016/j.metabol.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  89. Kheirandish-Gozal L, Peris E, Wang Y, Tamae Kakazu M, Khalyfa A, Carreras A, Gozal D. Lipopolysaccharide-binding protein plasma levels in children: effects of obstructive sleep apnea and obesity. J Clin Endocrinol Metab. 2014;99:656–63. doi:10.1210/jc.2013-3327.

    Article  CAS  PubMed  Google Scholar 

  90. Barcelo A, Esquinas C, Robles J, Pierola J, De la Pena M, Aguilar I, Morell-Garcia D, Alonso A, Toledo N, Sanchez-de la Torre M, Barbe F. Gut epithelial barrier markers in patients with obstructive sleep apnea. Sleep Med. 2016;26:12–5.

    Article  PubMed  Google Scholar 

  91. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2016; doi:10.1007/s12035-016-0004-2.

    Google Scholar 

  92. Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, Zhang J, Yu C. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016;16 doi:10.1186/s12876-016-0500-x.

  93. Nakamura Y, Masuda O, Takano T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 1996;60:488–9.

    Article  CAS  PubMed  Google Scholar 

  94. Fuglsang A, Rattray FP, Nilsson D, Nyborg NC. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo. Antonie Van Leeuwenhoek. 2003;83:27–34.

    Article  CAS  PubMed  Google Scholar 

  95. Liu CF, Tung YT, Wu CL, Lee BH, Hsu WH, Pan TM. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J Agric Food Chem. 2011;59:4537–43. doi:10.1021/jf104985v.

    Article  CAS  PubMed  Google Scholar 

  96. Gomez-Guzman M, Toral M, Romero M, Jimenez R, Galindo P, Sanchez M, Zarzuelo MJ, Olivares M, Galvez J, Duarte J. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59:2326–36. doi:10.1002/mnfr.201500290.

    Article  CAS  PubMed  Google Scholar 

  97. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903. doi:10.1161/HYPERTENSIONAHA.114.03469.

    Article  CAS  PubMed  Google Scholar 

  98. Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr. 1996;64:767–71.

    CAS  PubMed  Google Scholar 

  99. Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352:535–8. doi:10.1126/science.aad9382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Durgan.

Ethics declarations

Conflict of Interest

David Durgan declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the author have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Grants

The present study was supported, in part, by grants from the American Heart Association 16SDG29970000 and the National Institutes of Health PHS DK56338, NINDS R01NS080531, 5R21NS094806.

Additional information

This article is part of the Topical Collection on Gut Microbiome, Sympathetic Nervous System, and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durgan, D.J. Obstructive Sleep Apnea-Induced Hypertension: Role of the Gut Microbiota. Curr Hypertens Rep 19, 35 (2017). https://doi.org/10.1007/s11906-017-0732-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0732-3

Keywords

Navigation